
 

322386 

 

 

 

Hard Real Time 

Linux* using 

Xenomai* on 

Intel® Multi-Core 

Processors 
       October 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

White Paper 

Amarpreet Singh Ugal 

BIOS/Firmware Engineer 

Intel Corporation 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

2    

Executive Summary 

 

Linux* is not a hard real-time operating system as it does not guarantee 

a task to meet strict deadlines. The kernel can suspend a task when its 

time slice has completed and it can remain suspended for an arbitrarily 

long time (for example, when an interrupt is getting serviced). Some of 

the hard real-time approaches that can be applied to Linux are “Micro-

Kernel Approach” and “Nano-Kernel Approach”. This document covers a 

similar approach using Xenomai*. 

The basic idea of making standard Linux hard real-time is that a small 

high-priority real-time kernel runs between the hardware and standard 

Linux. The real-time tasks are executed by this real-time kernel (run to 

completion) and normal Linux processes are suspended during this 

duration. The real-time scheduler of the real-time kernel treats the 

standard Linux kernel as an idle task, which when given a chance to run, 

executes its own scheduler to schedule normal Linux processes. But since 

the real-time kernel runs at a higher priority, the normal Linux processes 

can at any time be preempted by a real-time task.  

Interrupt management is another factor handled by the real-time kernel. 

When an interrupt gets triggered during the execution of a real-time 

task, it is first received by the real-time kernel and stored. When the 

real-time kernel is done, the interrupt is handed over to the standard 

Linux kernel. If there is an associated real-time handler for the interrupt, 

it is executed by the real-time kernel. Otherwise if there are no more 

real-time tasks to run, the stored interrupt is passed to normal Linux. 

Different mechanisms are used to pass the interrupts from real-time 

kernel to normal Linux kernel. Xenomai uses an Interrupt pipeline from 

the  ADEOS Project. 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  3 

 

The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, 

training, Intel‟s tool loaner program, and connect with an e-help desk 

and the embedded community. Design Fast. Design Smart. Get started 

today. www.intel.com/embedded/edc. § 

http://www.intel.com/embedded/edc


Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

4    

Contents 

Introduction ............................................................................................................ 5 

Intel® Core™ i7 Multi-core Intel® Architecture Processor ............................. 5 

Real-time Systems ................................................................................. 5 
Hard Real-time Systems ............................................................... 5 
Soft Real-time Systems ................................................................ 6 
Hard Real-time Systems on Linux* ................................................. 6 

Xenomai* ............................................................................................. 8 
Xenomai Skins ............................................................................. 9 

Installation and Configuration .................................................................................. 10 

Required Packages ............................................................................... 10 

Installing and Configuring CentOS* 5.2 .................................................. 10 

Installing and Configuring Linux Kernel 2.6.26.8 on CentOS* 5.2 ............... 12 

Patching and Configuring Xenomai 2.4.6 ................................................. 16 

Testing Installation and Running Instrumentation Examples ........................................ 19 

switchbench ........................................................................................ 20 

switchtest ........................................................................................... 20 

cyclictest............................................................................................. 21 

clocktest ............................................................................................. 23 

latency ............................................................................................... 23 

xeno-test ............................................................................................ 27 

Conclusion ............................................................................................................ 28 

References ............................................................................................................ 29 



 

322386 

Introduction 

This document describes how Xenomai* can be configured on Intel® Core™ i7 
multi- core Intel® architecture processors. It does not cover the internals of 
Xenomai or the programming of real-time applications using Xenomai. 

Intel® Core™ i7 Multi-core Intel® Architecture 
Processor 

Intel® Core™ i7 is the first revision of the latest-generation micro-architecture 
processor released by Intel. It is a successor to Intel® Core™ micro-
architecture.  

Real-time Systems 

Real-time systems in general are classified as hard real-time and soft real-
time systems.  

Hard Real-time Systems 

Hard real-time systems have strict timing requirements to meet deadlines or 
erratic behavior can occur. Figure 1 shows the timing constraints in a hard 
real-time system using a time-utility function. An example of a hard real-time 
system is an aircraft auto-pilot system. When the auto-pilot senses a 
potential collision with a nearby object, it changes direction of the aircraft 
immediately. Some of the major requirements of hard real-time systems are: 
minimal latency during task switching, minimal jitter, run-to completion, 
preemptive multi-tasking, priority inheritance and principally meet strict 
deadlines. 

Figure 1. Hard Real-time System Time-utility Function 

 

Deadline
Completion Time

U
tility

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

6    

Soft Real-time Systems 

For soft real-time systems, meeting a deadline is important, but missing the 
same may not be catastrophic. Figure 2 shows the timing constraints in a soft 
real-time system using a time-utility function. The software misses the 
deadline. An example of a soft real-time system is a CD player, which, if 
ejected, may delay the actual time of responding to the eject request by few 
milliseconds. 

Figure 2. Soft Real-time System Time-utility Function 

 

Completion 

Time
Deadline

U
tility

 

Hard Real-time Systems on Linux* 

Linux* is not a hard real-time operating system as it does not guarantee a 
task to meet strict deadlines. The kernel can suspend a task when its time 
slice has completed and it can remain suspended for an arbitrarily long time 
(for example, when an interrupt is getting serviced). Some of the hard real-
time approaches that can be applied to Linux are discussed in Micro-kernel 
Approach and Nano-kernel Approach. 

The basic idea of making standard Linux hard real-time is that a small high-
priority real-time kernel runs between the hardware and standard Linux. The 
real-time tasks are executed by this real-time kernel (run to completion) and 
normal Linux processes are suspended during this duration. The real-time 
scheduler of the real-time kernel treats the standard Linux kernel as an idle 
task, which when given a chance to run executes its own scheduler to 
schedule normal Linux processes. But since the real-time kernel runs at a 
higher priority, the normal Linux processes can at any time be preempted by 
a real-time task. Interrupt management is another factor handled by the real-
time kernel. When an interrupt gets triggered during the execution of a real-
time task, it is first received by the real-time kernel and stored. When the 
real-time kernel is done, the interrupt is handed over to the standard Linux 
kernel. If there is an associated real-time handler for the interrupt, it is 
executed by the real-time kernel. Otherwise if there are no more real-time 
tasks to run, the stored interrupt is passed to normal Linux. Different 
mechanisms are used to pass the interrupts from real-time kernel to normal 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  7 

Linux kernel. Xenomai uses an Interrupt pipeline from the ADEOS project (see 
References). 

Micro-kernel Approach 

A hard real-time kernel called micro-kernel (see Figure 3) is provided 
between the standard Linux kernel and the hardware. The Micro-kernel is 
responsible for intercepting all the hardware interrupts and ensures that 
normal Linux kernel cannot suspend high-priority interrupts or tasks currently 
running on the micro-kernel. Besides, the standard Linux kernel runs at a 
lower priority in the background of micro- kernel. The micro-kernel also 
comes with a RT scheduler that schedules higher-priority tasks with minimal 
latency (for example RTLinux* or RTAI*). 

Figure 3. Micro-kernel Approach to Hard Real-time 

Non-RT 

Tasks

RT 

Tasks

Standard 

Linux* kernel 

(low priority)

Micro-kernel (Hard real-time 

kernel)

Hardware
 

Nano-kernel Approach 

The nano-kernel approach (see Figure 4) is similar to micro-kernel in that it 
also provides a real-time kernel layer between the standard Linux kernel and 
hardware, with standard Linux kernel running in the background as a low-
priority task. Nano-kernel is basically a Hardware Abstraction Layer that 
unlike micro-kernel, provides the facility to run multiple real-time and non-
real-time operating systems on top of the nano-kernel (for example, 
ADEOS*). 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

8    

Figure 4. Nano-kernel Approach to Hard Real-time 

RT Tasks
Non-RT tasks 

(user space)

Non-RT tasks 

(user space)

Kernel 

(low priority)

Kernel 

(low priority)

Real-time 

Kernel 

(high priority)

Nano-kernel/Interrupt Dispatcher

Hardware
 

Xenomai* 

To support hard real-time capabilities to the Linux kernel, Xenomai* 
implements a micro-kernel between the hardware and the Linux kernel (see 
Figure 5). This micro- kernel is responsible for executing hard real-time tasks 
and intercepts interrupts, blocking them from reaching the Linux kernel, 
hence preventing the Linux kernel from preempting the hard real-time micro-
kernel. Intrinsically, the Linux kernel executes in the background of this 
micro-kernel as a low-priority task that runs non-real-time tasks. Xenomai 
provides the hard real-time development framework with real-time support 
for user-space applications and implements the micro-kernel with a real-time 
scheduler. It also provides different APIs for creating RT tasks, timers, 
synchronization objects, etc., and simulates various APIs called skins (see 
Xenomai Skins) for real-time application, including POSIX* interface, RTAI, 
VxWorks*, etc., which allows easier porting of existing RT applications to 
Linux. 

Xenomai uses the ADEOS real-time nano-kernel to handle real-time interrupt 
dispatching. 

See References for further information on Xenomai and how to use it for 
creating hard real-time tasks. 

Note: There are many other hard real-time schemes available for Linux (for 
example, RTLinux (Wind River* Linux), RTAI, etc., but this document solely 
covers Xenomai). 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  9 

Figure 5. Xenomai* Architecture 

 

USER SPACE ALLOCATIONS

Linux* syscall interface

Xenomai* skins

Kernel 

space 

apps

Hardware

ADEOS/I-pipe

HAL

Abstract RTOS Core/

real-time nucleus

 

Xenomai Skins 

The Xenomai core is an abstract RTOS that provides operating-system 
resources and generic building blocks for building different RTOS interfaces 
called skins. These skins mimic the different RTOS APIs, allowing 
straightforward porting of existing applications to Xenomai. The building 
blocks form the Xenomai nucleus. Xenomai comes with the following skins. 
For further information click on the links below. 

 POSIX* 

 pSOS* 

 RTAI* 

 uITRON* 

 VRTX* 

 VxWorks* 

 Xenomai native API* 

http://svn.gna.org/svn/xenomai/trunk/doc/txt/pse51-skin.txt
http://svn.gna.org/svn/xenomai/trunk/doc/txt/psos-skin.txt
http://svn.gna.org/svn/xenomai/trunk/doc/txt/rtai-skin.txt
http://svn.gna.org/svn/xenomai/trunk/doc/txt/uITRON-skin.txt
http://svn.gna.org/svn/xenomai/trunk/doc/txt/vrtx-skin.txt
http://svn.gna.org/svn/xenomai/trunk/doc/txt/vxworks-skin.txt
http://svn.gna.org/svn/xenomai/trunk/doc/generated/pdf/native-api.pdf


Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

10    

Installation and Configuration 

Required Packages 

For finding the Xenomai package compatibility with the Linux kernel, see 
http://www.xenomai.org/index.php/Xenomai:News#2008-11-
10_Xenomai_2.4.6  

Note:  A Xenomai patch does not exist for Linux kernel version 2.6.18 at the time of 
writing   this document. 

Combinations of the following packages have been tested for the purpose of 
this document, but the same installation steps should apply if other 
compatible versions of the Xenomai and Linux kernel are used. 

Table 1. Required Packages1 

Package Version Download Link 

CentOS* 5.2 http://isoredirect.centos.org/centos-5/5.2/  

Linux* Kernel 2.6.26.8 http://www.kernel.org/pub/linux/kernel/v2.6/linux-

2.6.26.8.tar.gz  

Xenomai* 2.4.6 http://download.gna.org/xenomai/stable/xenomai-

2.4.6.tar.bz2  

1. These packages were installed/patched on the CentOS* Linux 5.2 distribution. 

Installing and Configuring CentOS* 5.2 

1. Download CentOS 5.2 Linux Distribution (see Table 1 for download link). 

2. Install CentOS with default packages. Remove „Desktop-Gnome‟ when 
asked for the packages to Install. This will avoid the overhead of X11. 

Note: X11 can also be disabled later so that it does not load at system bootup. To 
disable X11, go to /etc/inittab file and change the line: id:5:initdefault: to 
id:3:initdefault:. Disabling X-Windows saves a reasonable amount of RAM. 

3. After installation, boot into CentOS. 

4. Ensure the following requisite development packages are installed. 
Otherwise install them from the installation disk(s). If there are multiple 
installation disks, disk numbers where the packages can be found are 
highlighted in blue.  

a. Mkdir/mnt/cdrom 

http://www.xenomai.org/index.php/Xenomai:News#2008-11-10_Xenomai_2.4.6
http://www.xenomai.org/index.php/Xenomai:News#2008-11-10_Xenomai_2.4.6
http://isoredirect.centos.org/centos-5/5.2/
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.26.8.tar.gz
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.26.8.tar.gz
http://download.gna.org/xenomai/stable/xenomai-2.4.6.tar.bz2
http://download.gna.org/xenomai/stable/xenomai-2.4.6.tar.bz2


Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  11 

b. For each of the disks do the following, to mount/unmount and change 
to the install directory: 

      mount /dev/cdrom /mnt/cdrom (to mount the disk) 

 

>> umount /dev/cdrom  

(to remove the disk after package installation) 

 

cd /mnt/cdrom/CentOS 

c. Install the following in the listed sequence: 

rpm -ivh kernel-headers-2.6.18-92.el5.i386.rpm (Disk 1) 

 

rpm -ivh cpp-4.1.2-42.el5.i386.rpm (Disk 1) 

 

rpm -ivh glibc-headers-2.5-24.i386.rpm (Disk 2) 

 

rpm -ivh glibc-devel-2.5-24.i386.rpm (Disk 2) 

 

rpm -ivh libgomp-4.1.2-42.el5.i386.rpm (Disk 2) 

 

rpm -ivh gcc-4.1.2-42.el5.i386.rpm (Disk 2) 

 

rpm -ivh elfutils-libs-0.125-3.el5.i386.rpm (Disk 2) 

 

rpm -ivh redhat-rpm-config-8.0.45-24.el5.noarch.rpm (Disk 

2) 

 

rpm -ivh ncurses-devel-5.5-24.20060715.i386.rpm (Disk 2) 

 

rpm -ivh elfutils-0.125-3.el5.i386.rpm (Disk 2) 

 

rpm -ivh libstdc++-devel-4.1.2-42.el5.i386.rpm (Disk 2) 

 

rpm -ivh doxygen-1.4.7-1.1.i386.rpm (optional, Disk 2)  

 

rpm -ivh unifdef-1.171-5.fc6.i386.rpm (Disk 3) 

 

rpm -ivh rpm-build-4.4.2-48.el5.i386.rpm (Disk 3) 

 

rpm -ivh emacs-common-21.4-20.el5.i386.rpm (required for 

emacs-nox, Disk 3) 

 

rpm -ivh emacs-nox-21.4-20.el5.i386.rpm (optional,  

Disk 4) 

5. Stop the unnecessary services. A list of services currently running can be 
checked by issuing the following command: 

chkconfig --list | more  

6. The services can be shut down using: 

chkconfig --levels 123456 servicename on/off 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

12    

Example: chkconfig --levels 123456 iptables off, will 
shutdown the iptables service. 

For the purpose of this document, the following services have been shut 
down: 

iptables, ip6tables, yum-updatesd, sendmail, bluetooth, 

cups, irda, acpid, atd, auditd, autofs, hidd and smartd. 

The user determines the services to be shut down. 

7. Remove the unnecessary cron jobs that are scheduled to run daily: 

mkdir /etc/cron.backup  

cd /etc/cron.daily 

mv mlocate.cron ../cron.backup 

Note: There are few default cron jobs scheduled to run daily when CentOS is 
installed (for example, 0anacron, 0logwatch, cups, logrotate, 
makewhatis.cron, mlocate.cron, prelink, rpm and tmpwatch). Remove the 
ones not required by moving them to the /etc/cron.backup directory. For 
further information on tuning Linux, please see Section 3 of 
http://download.intel.com/design/intarch/ep80579/320524.pdf. 

Installing and Configuring Linux Kernel 2.6.26.8 
on CentOS* 5.2 

1. Download Linux kernel source (linux-2.6.26.8.tar.gz). See Table 1 for 
download link. Extract and copy it to a folder (for example, 
/usr/src/kernels) 

2. cd /usr/src/kernels 

3. tar -xvzf linux-2.6.26.8.tar.gz 

4. mv linux-2.6.26.8 linux-2.6.26.8_xenomai-2.4.6 

5. cd linux-2.6.26.8_xenomai-2.4.6 

6. Edit the Makefile and change the EXTRAVERSION=.8 to 
EXTRAVERSION=.8_xenomai-2.4.6. This is just to differentiate this 
kernel from others, in case of a multi-boot kernel installation. 

7. make mrproper (to configure the kernel from scratch) 

8. Configure the kernel as below: 

-- make menuconfig 

Device Drivers ---> USB support ---> OHCI HCD support <M> 

 

<M> 

  

Device Drivers ---> USB support ---> UHCI HCD (most Intel and 

VIA) support 

  

http://download.intel.com/design/intarch/ep80579/320524.pdf


Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  13 

Device Drivers ---> USB support ---> EHCI HCD (USB 2.0) 

support <M>  

 

Device Drivers ---> USB support ---> USB Mass Storage support 

<M> 

 

Device Drivers ---> Serial ATA (prod) and Parallel ATA 

(experimental) 

drivers ---> AHCI SATA support <M> 

Note: The above configuration settings are built into the kernel by default. They 
need to be included as kernel modules; otherwise, the following warnings 
appear when the kernel is installed: 

 
WARNING: No module ehci-hcd found for kernel 2.6.26.8_xenomai-

2.4.6, continuing anyway 

 

WARNING: No module ohci-hcd found for kernel 2.6.26.8_xenomai-

2.4.6, continuing anyway 

 

WARNING: No module uhci-hcd found for kernel 2.6.26.8_xenomai-

2.4.6, continuing anyway 

 

WARNING: No module ahci found for kernel 2.6.26.8_xenomai-2.4.6, 

continuing anyway 

 

WARNING: No module ehci-hcd found for kernel 2.6.26.8_xenomai-

2.4.6, continuing anyway 

 

WARNING: No module ohci-hcd found for kernel 2.6.26.8_xenomai-

2.4.6, continuing anyway 

 

WARNING: No module uhci-hcd found for kernel 2.6.26.8_xenomai-

2.4.6, continuing anyway 

 

WARNING: No module usb-storage found for kernel 2.6.26.8_xenomai-

2.4.6, continuing anyway 

Also, change the following kernel configuration settings: 

Processor type and features ---> Preemption Model ---> 

(Preemptible Kernel(Low-Latency Desktop)) 

If memory is not over 4 GB, disable the configuration settings pertaining to 
High Memory Support, PAE and 64 bit Memory and IO resources. 

Processor type and features ---> High Memory Support ---> off 

 

Processor type and features ---> PAE (Physical Address Extension) 

Support - 

--> disabled 

 

Processor type and features ---> 64 bit Memory and IO resources 

(EXPERIMENTAL) ---> disable 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

14    

Choose the most suitable processor family for your system. To determine the 
type of processor being used, use the following command: 

cat /proc/cpuinfo | grep "model name" 

Running the above command for a two Quad Core Intel® Core™ i7 CPU 
configuration yields the following result: 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

model name : Genuine Intel(R) CPU @ 0000 @ 2.13GHz 

Since, from the above output it can be seen that there are 16 CPUs, configure 
the processor type settings as follows: 

Processor type and features ---> Processor family ---> (Core 

2/newer Xeon)  

 

Processor type and features ---> Symmetric multi-processing 

support --->enabled 

 

Processor type and features ---> sub-architecture type ---> 

Support for other sub-arch SMP systems with more than 8 CPUs 

Caution: The kernel configuration for “Processor type and features ---> sub-
architecture type” should be selected correctly, otherwise Linux will fail to 
boot or a Kernel panic would occur. The “Support for other sub-arch SMP 
systems with more than 8 CPUs” is chosen for a system with two Quad Core 
Intel® Core™ i7 CPUs (16 virtual CPUs). For a single Quad Core Intel® Core™ 
i7 CPU or other standard PC or compatible, “PC-Compatible” setting would 
suffice. 
 

Enable loadable module support ---> Forced module unloading ---> 

disable 

  

Enable loadable module support ---> Module versioning support ---

> disable  

 

Enable loadable module support ---> Automatic kernel module 

loading --->enable 

Save and exit the kernel configuration menu. 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  15 

Build and install the kernel to verify if the kernel boots successfully with no 
errors: 

make clean && make && make modules && make modules_install 

&& make install 

vi /etc/grub.conf 

Change 'default' setting to point to 'CentOS (2.6.26.8_xenomai-2.4.6)'. Save 
and exit file. 

Note: The default setting can be altered by changing the default (highlighted below) 
in the „/ etc/grub.conf‟ file. In the example below, the Linux kernel will boot 
by default from „2.6.26.8_xenomai-2.4.6‟ Changing the default to 1 means 
that the kernel will boot from the 2.6.18-92.el5 kernel. 

 
# grub.conf generated by anaconda 

 

# 

 

# Note that you do not have to rerun grub after making changes to 

this file 

 

# NOTICE: You have a /boot partition. This means that 

 

# all kernel and initrd paths are relative to /boot/, eg. 

 

# root (hd0,0) 

 

# kernel /vmlinuz-version ro root=/dev/VolGroup00/LogVol00 

 

# initrd /initrd-version.img 

 

#boot=/dev/sda default=0 timeout=5 

splashimage=(hd0,0)/grub/splash.xpm.gz hiddenmenu 

title CentOS (2.6.26.8_xenomai-2.4.6) 

 

root (hd0,0) 

 

kernel /vmlinuz-2.6.26.8_xenomai-2.4.6 ro 

root=/dev/VolGroup00/LogVol00 rhgb pci=nommconf 

crashkernel=128M@16M 

 

initrd /initrd-2.6.26.8_xenomai-2.4.6.img title CentOS (2.6.18-

92.el5) 

root (hd0,0) 

 

kernel /vmlinuz-2.6.18-92.el5 ro root=/dev/VolGroup00/LogVol00 

rhgb quiet crashkernel=128M@16M 

 

initrd /initrd-2.6.18-92.el5.img 

Change the runlevel so as to boot to the command line: 
vi /etc/inittab 

 

Change the line: id:5:initdefault: to id:3:initdefault: 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

16    

Save and exit the file. 

Reboot. This should boot into the new installed kernel: 2.6.26.8_xenomai-
2.4.6 

Patching and Configuring Xenomai 2.4.6 

1. Download Xenomai 2.4.6 (see Table 1). Extract and copy it to a folder (for 
example, /usr/src/kernels).  

2. cd /usr/src/kernels 

3. tar -xvjf xenomai-2.4.6.tar.bz2 

4. cd xenomai-2.4.6 

5. Patch Xenomai using the following command: 
 

./scripts/prepare-kernel.sh --linux=/usr/src/kernels/linux-

2.6.26.8_xenomai-2.4.6 -- adeos=./ksrc/arch/x86/patches/adeos-

ipipe-2.6.26.7-x86-2.0-16.patch 

Note: When asked for the architecture type, choose the relevant type. In this case, 
it is the i686. 

6. cd /usr/src/kernels/linux-2.6.26.8_xenomai-2.4.6 

7. For reducing latencies, change the following Linux kernel configuration 
settings: 

--- make menuconfig 

Power management options ---> Power Management support ---> 

disabled 

 

Power management options ---> CPU Frequency scaling ---> CPU 

Frequency scaling ---> disabled 

 

Power management options ---> CPU idle PM support ---> 

disabled 

Note: It is important that System Management Interrupts (SMI) are disabled to 
avoid significant latencies. SMIs are being generated by the board power 
management hardware, and they can negate the hard real-time performance 
of the system. First, they can last for hundreds of microseconds, which, for 
many RT applications, cause unacceptable jitter. Second, they are the 
highest-priority interrupt in the system (even higher than the NMI). And 
third, an SMI cannot be intercepted because it does not have a vector in the 
CPU. Instead, when the CPU gets an SMI, it goes into a special mode and 
jumps to a hard-wired location in a special SMM address space (likely in BIOS 
ROM). Essentially SMI interrupts are „invisible‟ to the operating system. 
Although SMI interrupts are handled one processor at a time, real-time 
responsiveness on dual-core/ SMP systems is affected. If the processor 
handling the SMI interrupt has locked a mutex or spinlock, which is needed 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  17 

by some other core, that other core has to wait until the SMI interrupt 
handler has been completed and a mutex/spinlock has been released. 

Xenomai-related SMI options can be changed via the'Real-time sub-system' 
configuration setting. In case any of the SMIs are required, disable the 
"Globally disable SMI" configuration setting and choose from the other 
options (as shown in Figure 6). 

Figure 6. Options for System Management Interrupts 

 

Also, change the following kernel configuration settings: 

Processor type and features ---> Hign Resolution Timer Support 

---> enable 

 

Processor type and features ---> check for P4 thermal 

throttling interrupt 

---> disable 

 

Processor type and features ---> Toshiba Laptop support ---> 

disable 

 

Processor type and features ---> Dell laptop support ---> 

disable 

 

Bus options (PCI etc.) ---> PCI Express Hotplug driver ---> 

disable 

 

Bus options (PCI etc.) ---> Message Signaled Interrupts (MSI 

and MSI-X) --- 

> disable 

 

Bus options (PCI etc.) ---> PCCard (PCMCIA/CardBus) support --

-> disable 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

18    

Bus options (PCI etc.) ---> Support for PCI Hotplug ---> 

disable 

 

Device Drivers ---> Memory Technology Device (MTD) support ---

> disable 

 

Device Drivers ---> Fusion MPT device support ---> disable 

 

Device Drivers ---> I20 device support ---> disable 

 

Device Drivers ---> ISDN support ---> disable 

Save and exit the kernel configuration menu. 

8. Build and install kernel. 

make clean && make && make modules && make modules_install && 

make install 

9. Reboot (should boot into 2.6.26.8_xenomai-2.4.6 kernel). 

Note: After booting, check that the correct number of cores can be detected on the 
CPU. This can be done using “cat /proc/cpuinfo”. If the correct number of 
cores is not visible, there can be a mismatch between the BIOS setting and 
the Linux kernel configuration. For the correct number of cores to be 
detected, enable SMP/multi-core detection support in the BIOS. 

10. After booting, build Xenomai. 

cd /usr/src/kernels/xenomai-2.4.6 

11. Prepare the building of user space support using the autoconf script called 
„configure‟. The script also verifies that all necessary packages are 
available for Xenomai to build successfully. 

./configure 

Note: The following x86 options can be passed to the „configure‟ script: 
 

Generic configure options 

 

NAME    DESCRIPTION                [BINDING,]DEFAULT(*) 

 

--prefix   Installation directory      /usr/xenomai 

 

--enable-debug   Enable debug symbols (-g)   disabled 

 

--enable-smp   Enable SMP support          weak,disabled 

 

Arch-specific configure options 

 

NAME    DESCRIPTION                [BINDING,]DEFAULT(*) 

 

--enable-x86-sep  Enable x86 SEP instructions strong, disabled  

                  for issuing syscalls. 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  19 

 

    You will also need NPTL 

 

--enable-x86-tsc  Enable x86 TSC for timings  strong,enabled 

 

    You must have TSC for this. 

(*) Each option enabled by default can be forcibly disabled by 

passing --disable- <option> to the configure script. 

Further information on how to use the options and resolve conflicts can be 
found in the README.INSTALL file in the „/usr/src/kernels/xenomai-2.4.6‟ 
directory. 

12. Build and install the Xenomai binaries, libraries, and any support files into 
the appropriate locations: 

   make && make install 

13. Add the Xenomai installation paths to the PATH environment variable: 

   Export PATH= 

   /usr/xenomai/bin:/usr/xenomai/lib:/usr/xenomai/include:$PATH 

Optionally, add the above command to .bashrc, so that it executes on launch. 

Note: The Kernel configuration settings described in this document are personalized 
settings for getting hard real-time Linux working on two Quad Core Intel® 
Core™ i7 CPUs. The end-user is free to modify them according to specific 
needs. 

Testing Installation and Running 

Instrumentation Examples 

Xenomai comes with a number of tests that can be run to measure the 
performance of the real-time machine. The test cases are located in: 
/usr/xenomai/bin. Some of these are covered as below: 

Note: The test results for the individual tools presented below are for a particular 
dual-core machine. These results are examples showing how they can be 
interpreted to determine the real-time performance of the system. The results 
will vary for different machines with different kernel and real-time 
configurations and under different load conditions. 

 
$cat /proc/cpuinfo | grep "model name" outputs: 

 

model name    : Intel(R) Core(TM)2 Duo CPU    E8500 @ 3.16GHz 

model name    : Intel(R) Core(TM)2 Duo CPU    E8500 @ 3.16GHz 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

20    

switchbench 

The test ‘switchbench’ measures the context switch latency between two 
real-time tasks. 

usage: switchbench [options] 

 

-h - enable histogram 

 

-p <period_us> - timer period 

 

-n <samples> - number of samples to collect 

 

-i <samples> - number of _first_ samples to ignore 

Running switchbench produces the following output on a dual-core, Xenomai-
patched Linux machine: 

[root@ixa00321605 bin]# ./switchbench -n 100000 -h 

 

== Sampling period: 100 us 

 

== Do not interrupt this program 

 

RTH| lat min| lat avg| lat max| lost 

 

RTD| 1.067| 1.131| 1.451| 0 

 

---|---range-|---samples 

 

HSD| 1 - 2 | 99996 

 

HSS| 99996| 1.000| 0.000 

The above output shows that the average context switch latency is about 1 
µs. 

switchtest 

The test „switchtest’ provides the number of task switches that can happen 
every second. 

For usage of switchtest, run switchtest --help 

For switchtest to work, change the following kernel configuration setting: 

Real-time sub-system ---> Xenomai ---> Nucleus ---> Drivers --

-> Testing drivers ---> Context switch unit testing driver ---

> enable 

Save configuration changes and rebuild the kernel. 

Running switchtest produces the following output on a dual-core, Xenomai-
patched Linux machine: 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  21 

[root@ixa00321605 bin]# ./switchtest -T10 

 

== Testing FPU check routines... r0: 1 != 2 

r1: 1 != 2 r2: 1 != 2 r3: 1 != 2 r4: 1 != 2 r5: 1 != 2 r6: 1 

!= 2 r7: 1 != 2 

== FPU check routines: OK. 

 

== Threads: sleeper_ufps-0 rtk-1 rtk-2 rtk_fp-3 rtk_fp-4 

rtk_fp_ufpp-5 rtk_fp_ufpp- 

6 rtup-7 rtup-8 rtup_ufpp-9 

 

rtup_ufpp-10 rtus-11 rtus-12 rtus_ufps-13 rtus_ufps-14 rtuo-15 

rtuo-16 rtuo_ufpp-17 rtuo_ufpp-18 rtuo_ufps-19 

 

rtuo_ufps-20 rtuo_ufpp_ufps-21 rtuo_ufpp_ufps-22 

 

RTT| 00:00:01 

 

RTH|ctx switches|-------total 

 

RTD| 21643| 21643 

 

RTD| 21666| 43309 

 

RTD| 21666| 64975 

 

RTD| 21666| 86641 

 

RTD| 21666| 108307 

 

RTD| 21666| 129973 

 

RTD| 21666| 151639 

 

RTD| 21666| 173305 

 

RTD| 21666| 194971 

 

RTD| 21551| 216522 

The above output shows that about 21666 context switches can happen in a 
second in a test duration of 10 seconds. 

cyclictest 

The test „cyclictest’ measures the time between configured timer expiration 
time and the actual expire time. 

Usage: 

 

cyclictest <options> 

 

-b USEC --breaktrace=USEC send break trace command when 

                          latency > USEC 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

22    

-c CLOCK --clock=CLOCK select clock 

 

0 = CLOCK_MONOTONIC (default) 

 

1 = CLOCK_REAL TIME 

 

-d DIST  --distance=DIST distance of thread intervals in us 

default=500 

 

-i INTV  --interval=INTV base interval of thread in us 

                            default=1000 

 

-l LOOPS --loops=LOOPS number of loops: default=0(endless) 

 

-n      --nanosleep use clock_nanosleep 

 

-p PRIO  --prio=PRIO priority of highest prio thread 

 

-q      --quiet  print only a summary on exit 

 

-r       --relative use relative timer instead of 

                        absolute 

 

-t NUM   --threads=NUM number of threads: default=1 

 

-v      --verbose  output values on stdout for  

                            statistics 

 

  format: n:c:v n=tasknum c=count v=value in us 

Running cyclictest (10 timer threads with priority 80 and 5000 loops) 
produces the following output on a dual-core, Xenomai-patched Linux 
machine: 

[root@ixa00321605 bin]# ./cyclictest -t 10 -p 80 -n -i 5000 -l 

5000 

 

0.07 0.03 0.01 1/74 6256 

 

T: 0 ( 6246) P:80 I: 

1 5000 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 

T: 1 ( 6247) P:79 I: 

4 5500 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 

T: 2 ( 6248) P:78 I: 

5 6000 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 

T: 3 ( 6249) P:77 I: 

7 6500 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 

T: 4 ( 6250) P:76 I: 

8 7000 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 

T: 5 ( 6251) P:75 I: 

10 7500 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  23 

T: 6 ( 6252) P:74 I: 

11 8000 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 

T: 7 ( 6253) P:73 I:  

12 8500 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

 

T: 8 ( 6254) P:72 I:  

14 9000 C: 5000 Min: 0 Act: 0 Avg: 1 Max: 

 

T: 9 ( 6255) P:71 I:  

15 9500 C: 5000 Min: 0 Act: 0 Avg: 0 Max: 

The above output shows that Minimum and Average timer latencies for 10 
threads running in parallel is 0 µs, Maximum timer latency is 15 µs for thread 
9. 

clocktest 

The test „clocktest’ provides information on time offset using gettimeofday() 
as a reference, drift value and warp information. 

usage: clocktest [options] 

 

[-C <clock_id>]   # tested clock, default=0 

              (CLOCK_REAL TIME)  

[-T <test_duration_seconds>] # default=0, so ^C to end 

Running clocktest produces the following output on a dual-core, Xenomai-
patched Linux machine: 

[root@ixa00321605 bin]# ./clocktest 

 

== Tested clock: 0 (CLOCK_REAL TIME) 

  

CPU ToD offset [us] ToD drift [us/s]    warps   max delta [us] 

 

--- --------------- ---------------  ---------  -------------- 

 

0 37598625.8 -0.359 0 0.0 

1 37598625.5 -0.361 0 0.0 

latency 

The test „latency’ provides statistics for scheduling latency over a certain 
sampling period for a periodic real-time thread. 

usage: latency [options] 

 

[-h] # print histograms of min 

avg, max latencies 

 

[-s] # print statistics of min, 

avg, max latencies 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

24    

[-H <histogram-size>] # default = 200, increase if 

your last bucket is full 

 

[-B <bucket-size>] # default = 1000ns, decrease 

for more resolution 

 

[-p <period_us>]  # sampling period 

 

[-l <data-lines per header>] # default=21, 0 to suppress 

headers 

 

[-T <test_duration_seconds>] # default=0, so ^C to end 

 

[-q] # supresses RTD, RTH lines if 

-T is used 

 

[-D <testing_device_no>] # number of testing device, 

default=0 

 

[-t <test_mode>] # 0=user task (default, 

1=kerneltask, 2=timer IRQ 

 

[-f] # freeze trace for each new 

max latency 

 

[-c <cpu>] # pin measuring task down to 

given CPU 

 

[-P <priority>] # task priority (test mode 0 

and 1 only) 

Running latency produces the following output on a dual-core, Xenomai-
patched Linux machine: 

[root@ixa00321605 bin]# ./latency -t0 -p200 -f -T50 

 

== Sampling period: 200 us 

 

== Test mode: periodic user-mode task 

 

== All results in microseconds warming up... 

 

RTT| 00:00:01 (periodic user-mode task, 200 us period, priority 

99) 

 

RTH|---lat min|-lat avg|-lat max|-overrun|-lat best|-lat worst 

 

RTD| -0.220| -0.115| 0.273| 0| -0.220|  0.273 

 

RTD| -0.227| -0.185| 0.196| 0| -0.227|  0.273 

 

RTD| -0.224| -0.110| 0.281| 0| -0.227|  0.281 

 

RTD| -0.224| -0.183| 0.141| 0| -0.227|  0.281 

 

RTD| -0.222| -0.111| 0.293| 0| -0.227|  0.293 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  25 

RTD| -0.224| -0.185| 0.159| 0| -0.227|  0.293 

 

RTD| -0.223| -0.113| 0.253| 0| -0.227|  0.293 

 

RTD| -0.229| -0.181| 0.363| 0| -0.229|  0.363 

 

RTD| -0.224| -0.117| 0.218| 0| -0.229|  0.363 

 

RTD| -0.224| -0.183| 0.203| 0| -0.229|  0.363 

 

RTD| -0.220| -0.113| 0.248| 0| -0.229|  0.363 

 

RTD| -0.226| -0.183| 0.238| 0| -0.229|  0.363 

 

RTD| -0.223| -0.118| 0.291| 0| -0.229|  0.363 

 

RTD| -0.224| -0.182| 0.202| 0| -0.229|  0.363 

 

RTD| -0.221| -0.118| 0.239| 0| -0.229|  0.363 

 

RTD| -0.223| -0.182| 0.393| 0| -0.229|  0.393 

 

RTD| -0.222| -0.115| 0.281| 0| -0.229|  0.393 

 

RTD| -0.219| -0.178| 0.183| 0| -0.229|  0.393 

 

RTD| -0.221| -0.116| 0.236| 0| -0.229|  0.393 

 

RTD| -0.223| -0.183| 0.387| 0| -0.229|  0.393 

 

RTD| -0.221| -0.115| 0.272| 0| -0.229|  0.393 

 

RTT| 00:00:22 (periodic user-mode task, 200 us period, priority 

99) 

 

RTH|---lat min|-lat avg|-lat max|-overrun|-lat best|-lat worst 

 

RTD| -0.221| -0.180| 0.134| 0| -0.229|  0.393 

 

RTD| -0.223| -0.121| 0.237| 0| -0.229|  0.393 

 

RTD| -0.227| -0.179| 0.654| 0| -0.229|  0.654 

 

RTD| -0.223| -0.120| 0.439| 0| -0.229|  0.654 

 

RTD| -0.112| -0.075| 0.482| 0| -0.229|  0.654 

 

RTD| -0.113| -0.079| 0.387| 0| -0.229|  0.654 

 

RTD| -0.107| -0.074| 0.792| 0| -0.229|  0.792 

 

RTD| -0.107| -0.073| 0.359| 0| -0.229|  0.792 

 

RTD| -0.106| -0.073| 1.067| 0| -0.229|  1.067 

 

RTD| -0.107| -0.074| 0.354| 0| -0.229|  1.067 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

26    

RTD| -0.106| -0.074| 0.661| 0| -0.229|  1.067 

 

RTD| -0.107| -0.073| 0.374| 0| -0.229|  1.067 

 

RTD| -0.104| -0.073| 0.399| 0| -0.229|  1.067 

 

RTD| -0.106| -0.074| 0.351| 0| -0.229|  1.067 

 

RTD| -0.107| -0.074| 0.364| 0| -0.229|  1.067 

 

RTD| -0.107| -0.074| 0.392| 0| -0.229|  1.067 

 

RTD| -0.106| -0.074| 0.384| 0| -0.229|  1.067 

 

RTD| -0.107| -0.073| 0.402| 0| -0.229|  1.067 

 

RTD| -0.107| -0.074| 0.370| 0| -0.229|  1.067 

 

RTD| -0.107| -0.075| 0.395| 0| -0.229|  1.067 

 

RTD| -0.107| -0.074| 1.019| 0| -0.229|  1.067 

RTT| 00:00:43 (periodic user-mode task, 200 us period, priority 

99) 

RTH|---lat min|-lat avg|-lat max|-overrun|-lat best|-lat worst 

 

RTD| -0.220| -0.075| 0.373| 0| -0.229|  1.067 

 

RTD| -0.224| -0.181| 0.365| 0| -0.229|  1.067 

 

RTD| -0.106| -0.074| 0.440| 0| -0.229|  1.067 

 

RTD| -0.107| -0.074| 0.441| 0| -0.229|  1.067 

 

RTD| -0.105| -0.071| 0.373| 0| -0.229|  1.067 

 

RTD| -0.107| -0.074| 0.502| 0| -0.229|  1.067 

 

RTD| -0.106| -0.074| 0.368| 0| -0.229|  1.067 

 

---|---------|---------|--------|--------|-------------------- 

 

RTS| -0.229|   -0.113|   1.067|       0|00:00:50/00:00:50 

As can be seen from the results above that running the latency test for 50 
seconds, produces no overruns. Latency test should be run for longer periods 
of time and the machine flooded with processes to get the actual figures for 
the real-time task in consideration. 

Note: Latency test provides instrumentation for user-space task, kernel-space task 
and timer interrupt. 

For enabling the timer interrupt latency instrumentation, the following 
configuration setting should be enabled in the kernel. 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  27 

Real-time sub-system ---> Xenomai ---> Nucleus ---> Drivers ---> 

Testing drivers ---> Timer benchmark driver ---> enable 

xeno-test 

The test „xeno-test’ is a very useful test to determine the system's real-time 
state. It provides detailed information of a number of system parameters 
including faults found in all the CPUs present. It runs several test cases to 
monitor the real-time performance of the machine; it also runs the latency 
tests in all the three modes. 

usage: xeno-test [options] 

 

  runs latency test in all 3 test-modes 

 

  -w <number> spawn N workloads (dd if=/dev/zero of=/dev/null)   

             default=1 

 

  -d <device> used as alternate src in workload (dd if=/dev/zero 

  ..) The device must be mounted, and unfortunately) 

 cannot be an NFS mount a real device (ex /dev/hda) 

 will generate interrupts 

 

  -W <script> script is an alternate workload. If you need to 

pass args to your program, use quotes. The program 

must clean up its children when it gets a SIGTERM 

 

  -P <cmd> cmd is run before and after rt-tests  

(forex: 'ntpdate -b <host>' or 'ntpq -p') 

 

  -L writes logs to /tmp/test-2.6.26.1_xenomai-2.4.6-

<timestamp> 

 

 -N <name> like -L, but writes to name-<timestamp> (in PWD) 

 

  name can be full or relative pathname 

 

 -v verbose 

 

 -M <email> sends output to given addr 

 

 -m sends output to xenomai-data@gna.org 

 

 -U <url> uploads output to given URL 

 

 -D <datefmt> alternate options to date, for timestamp (dflt: 

 

 

# following options are passed thru to latency 

 

 -s print statistics of sampled data (default on) 

 

 -h print histogram of sampled data (default on, 

implies -s) 

 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

28    

 -q quiet, dont print 1 sec sampled data (default on, 

off if !-T) 

 

 -T <sec test>    (default: 120 sec) 

 

 -l <data/header lines>  (default 21) 

 

 -H <bucketcount>   (default 100) 

 

 -B <bucketsize ns>   (default 1000 ns) 

 

 -p <sample_period_us>  (default 100 us) 

Conclusion 

Xenomai is a generic solution to achieve hard real-time capabilities in Linux 
for any dimension of the project which uses Linux. It provides different APIs 
for creating RT tasks, timers, synchronization objects, etc., and simulates 
various APIs called skins for real-time application, including POSIX interface, 
RTAI, VxWorks, etc., which allows easier porting of existing RT applications to 
Linux. 

The Intel® Embedded Design Center provides qualified developers with web-
based access to technical resources. Access Intel Confidential design 
materials, step-by step guidance, application reference solutions, training, 
Intel‟s tool loaner program, and connect with an e-help desk and the 
embedded community. Design Fast. Design Smart. Get started today. 
http://intel.com/embedded/edc.  
 

http://intel.com/embedded/edc


Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  29 

References 

 

A Quantitative 
Comparison of Real 
Time Linux Solutions 

http://rtg.informatik.tu-chemnitz.de/docs/da-sa-txt/sa-
franm.pdf 

ADEOS http://home.gna.org/adeos/ 

Captain's Universe http://www.captain.at/xenomai.php 

Life with ADEOS http://www.xenomai.org/documentation/branches/v2.0
.x/pdf/Life-with-Adeos.pdf 

Performance 
Comparison of 
VxWorks, Linux, 
RTAI, and Xenomai 
in a Hard Real-Time 
Application 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber
=04448543 

Xenomai API http://www.xenomai.org/documentation/branches/v2.4
.x/html/api/index.html 

Xenomai 
documentation 

http://www.xenomai.org/documentation/branches/v2.4
.x/pdf/ 

Xenomai FAQs http://www.xenomai.org/index.php/FAQs 

Xenomai official site http://www.xenomai.org/index.php/Main_Page 

Xenomai: A Tour of 
the Native API 

http://www.xenomai.org/documentation/branches/v2.0
.x/pdf/Native-API-Tour.pdf 

Time/Utility 
Functions 

http://www.real-time.org/timeutilityfunctions.htm 

 

http://rtg.informatik.tu-chemnitz.de/docs/da-sa-txt/sa-franm.pdf
http://rtg.informatik.tu-chemnitz.de/docs/da-sa-txt/sa-franm.pdf
http://home.gna.org/adeos/
http://www.captain.at/xenomai.php
http://www.xenomai.org/documentation/branches/v2.0.x/pdf/Life-with-Adeos.pdf
http://www.xenomai.org/documentation/branches/v2.0.x/pdf/Life-with-Adeos.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04448543
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04448543
http://www.xenomai.org/documentation/branches/v2.4.x/html/api/index.html
http://www.xenomai.org/documentation/branches/v2.4.x/html/api/index.html
http://www.xenomai.org/documentation/branches/v2.4.x/pdf/
http://www.xenomai.org/documentation/branches/v2.4.x/pdf/
http://www.xenomai.org/index.php/FAQs
http://www.xenomai.org/index.php/Main_Page
http://www.xenomai.org/documentation/branches/v2.0.x/pdf/Native-API-Tour.pdf
http://www.xenomai.org/documentation/branches/v2.0.x/pdf/Native-API-Tour.pdf
http://www.real-time.org/timeutilityfunctions.htm


Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 
 

30    

 

Authors 

Amarpreet Singh Ugal is a BIOS/Firmware Engineer with ECG 
at Intel Corporation. 

Acronyms 

ACPI  Advanced Configuration and Power Interface 

ADEOS Adaptive Domain Environment for Operating Systems 

BIOS  Basic Input/output System 

CPU  Central processing unit 

HAL  Hardware Abstraction Layer 

POSIX Portable Operating System Interface 

RT  Real Time 

RTAI  Real Time Application Interface 

SMI  System Management Interrupt 

SMP  Symmetric multiprocessing 



Hard Real Time Linux* Using Xenomai* on Intel® Multi-core Processors 

 

 

  31 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO 

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY 

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND 

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND 

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF 

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A 

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 

OTHER INTELLECTUAL PROPERTY RIGHT. 

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED 

NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD 

CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. 

Intel may make changes to specifications and product descriptions at any time, without notice. 

Designers must not rely on the absence or characteristics of any features or instructions marked 

“reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility 

whatsoever for conflicts or incompatibilities arising from future changes to them. The information 

here is subject to change without notice. Do not finalize a design with this information. 

The products described in this document may contain design defects or errors known as errata which 

may cause the product to deviate from published specifications. Current characterized errata are 

available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before 

placing your product order. 

Copies of documents which have an order number and are referenced in this document, or other 

Intel literature, may be obtained by calling 1-800-548- 

4725, or by visiting Intel‟s Web Site. 

Any software source code reprinted in this document is furnished under a software license and may 

only be used or copied in accordance with the terms of that license. 

Intel processor numbers are not a measure of performance. Processor numbers differentiate features 

within each processor family, not across different processor families. See 

http://www.intel.com/products/processor_number for details. 

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. 

(“products”) in development by Intel that have not been made commercially available to the public, 

i.e., announced, launched or shipped. They are never to be used as “commercial” names for 

products. Also, they are not intended to function as trademarks. 

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, FlashFile, i960, 

InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom 

Inside, Intel Core, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, 

Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, 

Itanium Inside, MCS, MMX, Oplus, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The 

Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel 

Corporation in the U.S. and other countries. 

*Other names and brands may be claimed as the property of others.  

Copyright © 2009, Intel Corporation. All rights reserved.  

 


	Introduction
	Intel® Core™ i7 Multi-core Intel® Architecture Processor
	Real-time Systems
	Hard Real-time Systems
	Soft Real-time Systems
	Hard Real-time Systems on Linux*
	Micro-kernel Approach
	Nano-kernel Approach


	Xenomai*
	Xenomai Skins


	Installation and Configuration
	Required Packages
	These packages were installed/patched on the CentOS* Linux 5.2 distribution.
	Installing and Configuring CentOS* 5.2
	Installing and Configuring Linux Kernel 2.6.26.8 on CentOS* 5.2
	Patching and Configuring Xenomai 2.4.6

	Testing Installation and Running Instrumentation Examples
	switchbench
	switchtest
	cyclictest
	clocktest
	latency
	xeno-test

	Conclusion
	References

