
CS591 (Spring 2001)

The Linux Kernel:
Signals & Interrupts

CS591 (Spring 2001)

Signals

n Introduced in UNIX systems to simplify IPC.
n Used by the kernel to notify processes of system

events.
n A signal is a short message sent to a process, or

group of processes, containing the number identifying
the signal.
n No data is delivered with traditional signals.
n POSIX.4 defines i/f for queueing & ordering RT

signals w/ arguments.

CS591 (Spring 2001)

Example Signals
n Linux supports 31 non-real-time signals.
n POSIX standard defines a range of values for RT signals:

n SIGRTMIN 32 … SIGRTMAX (_NSIG-1) in <asm-
*/signal.h>

Signal Name Default Action Comment
1 SIGHUP Abort Hangup terminal or process
2 SIGINT Abort Keyboard interrupt (usually Ctrl-C)

…
9 SIGKILL Abort Forced process termination

10 SIGUSR1 Abort Process specific
11 SIGSEGV Dump Invalid memory reference

…

CS591 (Spring 2001)

Signal Transmission

n Signal sending:
n Kernel updates descriptor of destination process.

n Signal receiving:
n Kernel forces target process to “handle” signal.

n Pending signals are sent but not yet received.
n Up to one pending signal per type for each

process, except for POSIX.4 signals.
n Subsequent signals are discarded.
n Signals can be blocked, i.e., prevented from being

received.

CS591 (Spring 2001)

Signal-Related Data Structures

n sigset_t stores array of signals sent to a process.
n The process descriptor (struct task_struct in
<linux/sched.h>) has several fields for tracking
sent, blocked and pending signals.

struct sigaction {

void (*sa_handler)();/* handler address, or
SIG_IGN, or SIG_DFL */

sigset_t sa_mask; /* blocked signal list */

int sa_flags; /* options e.g., SA_RESTART */

}

CS591 (Spring 2001)

Sending Signals

n A signal is sent due to occurrence of corresponding
event (see kernel/signal.c).

n e.g., send_sig_info(int sig, struct
siginfo *info, struct task_struct *t);

n sig is signal number.
n info is either:

n address of RT signal structure.
n 0, if user mode process is signal sender.
n 1, if kernel is signal sender.

n e.g., kill_proc_info(int sig, struct
siginfo *info, pid_t pid);

CS591 (Spring 2001)

Receiving Signals

n Before process p resumes execution in user mode,
kernel checks for pending non-blocked signals for p.
n Done in entry.S by call to ret_from_intr(),

which is invoked after handling an interrupt or
exception.

n do_signal() repeatedly invokes
dequeue_signal() until no more non-blocked
pending signals are left.

n If the signal is not ignored, or the default action is
not performed, the signal must be caught.

CS591 (Spring 2001)

Catching Signals
n handle_signal() is invoked by do_signal() to

execute the process’s registered signal handler.
n Signal handlers reside (& run) in user mode code

segments.
n handle_signal() runs in kernel mode.
n Process first executes signal handler in user mode

before resuming “normal” execution.
n Note: Signal handlers can issue system calls.

n Makes signal mechanism complicated.
n Where do we stack state info while crossing

kernel-user boundary?

CS591 (Spring 2001)

Re-execution of System Calls
n “Slow” syscalls e.g. blocking read/write, put processes into

waiting state:
n TASK_(UN)INTERRUPTIBLE.

n A task in state TASK_INTERRUPTIBLE will be changed to
the TASK_RUNNING state by a signal.

n TASK_RUNNING means a process can be scheduled.

n If executed, its signal handler will be run before
completion of “slow” syscall.

n The syscall does not complete by default.
n If SA_RESTART flag set, syscall is restarted after signal

handler finishes.

CS591 (Spring 2001)

Real-Time Signals
n Real-Time signals are queued as a list of signal_queue

elements:

n A process’s descriptor has a sigqueue field that points to the
first member of the RT signal queue.

n send_sig_info() enqueues RT signals in a signal_queue.

n dequeue_signal() removes the RT signal.

struct signal_queue {

struct signal_queue *next;

siginfo_t info; /* See asm-*/siginfo.h */

}

CS591 (Spring 2001)

RT Signal Parameters

n siginfo_t contains a member for RT signals.
n The argument to RT signals is a sigval_t type:

n Extensions?
n Explicit scheduling of signals and corresponding

processes.

typedef union sigval {

int sigval_int;

void *sival_ptr;

} sigval_t;

CS591 (Spring 2001)

Signal Handling System Calls

n int sigaction(int sig, const struct
sigaction *act, struct sigaction
*oact);

n Replaces the old signal() function.

n Used to bind a handler to a signal.
n For RT signals, the handler’s prototype is of form:

n void (*sa_sigaction)(int,
siginfo_t *, void *);

n See Steven’s “Advanced Programming in the UNIX
Environment” for more…

CS591 (Spring 2001)

Interrupts
n Interrupts are events that alter sequence of instructions

executed by a processor.
n Maskable interrupts:

n Sent to INTR pin of x86 processor. Disabled by clearing IF
flag of eflags register.

n Non-maskable interrupts:
n Sent to NMI pin of x86 processor. Not disabled by clearing
IF flag.

n Exceptions:
n Can be caused by faults, traps, programmed exceptions

(e.g., syscalls) & hardware failures.

CS591 (Spring 2001)

Interrupt & Exception Vectors

n 256 8-bit vectors on x86 (0..255):
n Identify each interrupt or exception.

n Vectors:
n 0..31 for exceptions & non-maskable interrupts.
n 32..47 for interrupts caused by IRQs.
n 48..255 for “software interrupts”.

n Linux uses vector 128 (0x80) for system calls.

CS591 (Spring 2001)

IRQs & Interrupts
n Hardware device controllers that issue interrupt requests, do so

on an IRQ (Interrupt ReQuest) line.
n IRQ lines connect to input pins of interrupt controller (e.g.,

8259A PIC).

n Interrupt controller repeatedly:

n Monitors IRQ lines for raised signals.

n Converts signal to vector & stores it in an I/O port for
CPU to access via data bus.

n Sends signal to INTR pin of CPU.
n Clears INTR line upon receipt of ack from CPU on

designated I/O port.

CS591 (Spring 2001)

Example Exceptions

Exception Exception Handler Signal
0 Divide Error divide_error() SIGFPE
1 Debug debug() SIGTRAP

…
6 Invalid Opcode invalip_op() SIGILL

…
14 Page Fault page_fault() SIGSEGV

…

CS591 (Spring 2001)

Interrupt Descriptor Table

n A system Interrupt Descriptor Table (IDT) maps each
vector to an interrupt or exception handler.
n IDT has up to 256 8-byte descriptor entries.
n idtr register on x86 holds base address of IDT.

n Linux uses two types of descriptors:
n Interrupt gates & trap gates.

n Gate descriptors identify address of interrupt /
exception handlers

n Interrupt gates clear IF flag, trap gates don’t.

CS591 (Spring 2001)

Interrupt Handling

n CPU checks for interrupts after executing each
instruction.

n If interrupt occurred, control unit:
n Determines vector i, corresponding to interrupt.
n Reads ith entry of IDT referenced by idtr.

n IDT entry contains a segment selector,
identifying a segment descriptor in the global
descriptor table (GDT), that identifies a memory
segment holding handler fn.

n Checks interrupt was issued by authorized source.

CS591 (Spring 2001)

Interrupt Handling …continued…

n Control Unit then:
n Checks for a change in privilege level.

n If necessary, switches to new stack by:
n Loading ss & esp regs with values found in

the task state segment (TSS) of current
process.

n Saving old ss & esp values.
n Saves state on stack including eflags, cs & eip.
n Loads cs & eip w/ segment selector & offset

fields of gate descriptor in ith entry of IDT.
n Interrupt handler is then executed!

CS591 (Spring 2001)

Protection Issues

n A general protection exception occurs if:
n Interrupt handler has lower privilege level than a

program causing interrupt.
n Applications attempt to access interrupt or trap

gates.
n What would it take to vector interrupts to user

level?
n Programs execute with a current privilege level

(CPL).
n e.g., If gate descriptor privilege level (DPL) is lower

than CPL, a general protection fault occurs.

CS591 (Spring 2001)

Gates, Gates but NOT Bill Gates!
n Linux uses the following gate descriptors:

n Interrupt gate:

n DPL=0, so cannot be accessed by user mode progs.

n System gate:

n DPL=3, so can be accessed by user mode progs.

n e.g., vector 128 accessed via syscall triggered by int
0x80.

n Trap gate:

n DPL=0. Trap gates are used for activating exception
handlers.

CS591 (Spring 2001)

Initializing IDT

n Linux uses the following functions:
n set_intr_gate(n, addr);

n set_trap_gate(n,addr);

n set_system_gate(n,addr);

n Insert gate descriptor into nth entry of IDT.
n addr identifies offset in kernel’s code segment,

which is base address of interrupt handler.
n DPL value depends on which fn (above) is

called.
n e.g.,
set_system_gate(0x80,&system_call);

