Completely Fair Scheduler and its tuning'

Jacek Kobus and Rafal Szklarski

1 Introduction

The introduction of a new, the so called completely fair scheduler (CFS) to the Linux
kernel 2.6.23 does not mean that concepts needed to describe its predicesor, i.e. the O(1)
scheduler, cease to be relevant. In order to be able to present the principles of the CFS
scheduler and details of its algorithm the basic terminology must be introduced. This
should allow to describe the salient features of the new scheduler within the context of
the O(1) one. This approach should help the reader already acquainted with the O(1)
scheduler to grasp the essential changes introduced to the scheduler subsystem.

All modern operating systems divide CPU cycles in the form of time quantas among
various processes and threads (or Linux tasks) in accordance with their policies and prio-
rities. This is possible because the system timer periodically generates interrupts and thus
allows the scheduler to do its job of choosing the next task for execution. The frequency
of the timer is hard-coded and can be changed at the configuration phase. For the 2.4
kernels this freqency was set to 100 Hz. In case of the 2.6 kernels the user can choose
between the following values: 100, 250, 300 or 1000 Hz. The higher freqences mean the
faster serving of interrupts and the better interactivity of the system at the expence of
the higher system overhead. When there is no much work to be done in the system, i.e.
when there are no tasks in the running queue, servicing hundreds of timer interrupts per
second seems a waste of CPU cycles and energy. In the kernel 2.6.21 this problem was
solved by implementing so called dynamic tics. If the system is idle some clock interrupts
are ignored (skipped) and one can have as few as only six interrupts a second. In such a
state the system responds only to other hardware interrupts.

2 Scheduling

Time measurement is one of the most importants parts of the scheduler subsystem and
in the CFS implementation has been improved by addition of the high-resolution timer.
This kind of timer appeared in the kernel 2.6.16 and offers a nanosecond (instead of a
milisecond) resolution which enables the scheduler to perform its actions with much finer
granularity. In the O(1) scheduler every task is given its time share of the CPU of variable
length which depends on the task’s priority and its interactivity. This quanta can be used
in its entirety unless there appears in the system a new task with a higher priority or the
task yields (relinquishes) voluntarily the CPU waiting for initialized I/O operations to get
finished. When the timeslice is completely used up the scheduler calculates the new time

!This draft article is based on R.Szklarski’s M.S. thesis, Torun, 2009.

quanta for the task and moves the task from the active queue to the expired one. The O(1)
scheduler employs the concept of the epoch: when the active queue becomes eventually
empty the scheduler swaps the active and expired queues and the new epoch begins. This
mechanizm may lead to unacceptable long delays in serving the tasks because expired tasks
have to wait (for unknown amount of time) for active tasks to consume their timeslices.
When the number of task in the system increases the danger of starvation increases
as well. In order to guarantee good interactivity of the system the O(1) scheduler marks
some tasks as interactive and reinserts them into the active queue (but in order to prevent
starvation this is only done if the tasks in the expired array have run recently).

The CFS scheduler calculates the timeslices for a given task just before it is scheduled
for execution. Its length is variable (dynamic) and depends directly on its static priority
and the current load of the running queue, i.e. the number and priority of the tasks in
the queue.

In case of a general-purpose operating system its scheduler should take into account
the fact that tasks may have very different character and exhibit different behaviour and
therefore require adequate treatment by the scheduler. The Linux scheduler distinguishes
between the real-time, batch and interactive processes.

The O(1) scheduler employs two group to tackle real-time tasks, namely SCHED _FIFO
and SCHED_RR. SCHED_BATCH and SCHED_OTHER groups are used for clasification
of the remaining tasks. In principle the CFS scheduler uses scheduling policies similar
to the one used by the O(1). However, it introduces the notion of the class of tasks
which is characterized by a special scheduling policy. The CFS scheduler defins the fol-
lowing classes: real-time (SCHED_FIFO and SCHED_RR), fair (SCHED_NORMAL and
SCHED_BATCH) and idle (SCHED_IDLE). The idle class is very special since it is con-
cerned with task being started when there are no more ready tasks in the system (every
CPU has its own task of this sort). In this approach it is user’s responsibility to classify
properly his/hers tasks (using the chrt command) because the scheduler is not able to
classify a task by itself.

In case of the fair tasks class the CFS uses the following two polices:

SCHED _NORMAL - this policy is applied to normal tasks and it is also known as the SCHED-
_OTHER policy in the O(1) scheduler; SCHED_NORMAL replaced SCHED_OTHER
in the kernel 2.5.28

SCHED_BATCH — the CFS scheduler does not allow these tasks to preempt SCHED_NORMAL
tasks which results in a better utilization of the CPU cache. As a side effect it
makes these tasks less interactive so that this policy should be used (as its very
name suggests) for batch tasks.

It must be noted that the essential difference between the O(1) and CF'S scheduler boils
down to a completely new treatment of the SCHED NORMAL policy. In one of the ear-

liest commentaries on the new scheduler Molnar (its author) wrote (see Documentation /-
scheduler/sched-design-CFS.txt):

80% of CFS’s design can be summed up in a single sentence: CFS basically
models an "ideal, precise multi-tasking CPU” on real hardware.

The inventor of the CFS set himself a goal of devising a scheduler capable of the fair
devision of available CPU power among all tasks. If one had an ideal multitasking compu-
ter capable of concurrent execution on N processes then every process would get exactly
1/N-th of its available CPU power. In reality, on a single CPU machine only one pro-
cess can be executed at a time. That is why the CFS scheduler employs the notion of
the virtual runtime which should be equal for all tasks. In reality the virtual runtime is
a normalized value of the real runtime of a given task with its static priority taken into
account. The scheduler selects the task with the smallest vruntime value to reduce the
differences between virtual runtimes of all the tasks in the long run.

Real-time tasks are handeled by the CFS scheduler before tasks from other classes.
Two different policies are used to this end, namely SCHED_FIFQ and SCHED RR. SCHED FIFQ
tasks get no finite time quanta but execute until completion or yielding the CPU. On
the contrary tasks from the SCHED_RR class get definite time quantas and are scheduled
according to the round-robin algorithm (once all SCHED_RR tasks of a given prio level
exhaust their timeslices, the timeslices are refilled and the tasks continue running).

Policies in Linux rely on priorities associated with every task. Priorities are used by
the scheduler to rate the importance (or otherwise) of a given task and to calculate its
CPU share. The O(1) scheduler employs the so called dynamical priority which, for a
given task, is influenced by its static priority (set by the user) and its interactivity level.
To account for the latter the scheduler records for every task its CPU time and the time
it sleeps waiting for its /O operations to be finished. The ratio of these two values is used
as an indicator of the task interactivity. For I/O-bound proceses this indicator is small
and increases as CPU consumption increases.

When devising the new scheduler Molnar decided to get rid of these statistics and
subsequent modifications of the dynamic priorities of the running tasks. The new scheduler
tries to divide CPU resources fairly among all processes by taking into account their static
priorities. The handling of tasks’s queues have also been changed. The O(1) scheduler uses
(for every CPU in the system) two separate tables for handling active and passive tasks.
When all the tasks are found in the passive table the tables are swaped and a new epoch
begins (in fact this is achieved not by swapping the tables themselves but by swapping the
corresponding pointers). The CFS scheduler used instead a single red-black binary tree
which nodes hold task ready to be executed. The Linux scheduler (eithe old or new) uses
priorities within the range [0..99] for handling real-time tasks and the [100..139] range
for all other tasks. A new non real-time task gets by default the priority 120. This value
can be modified (adjusted) by means of the static priority (called also the nice value)
within the range [—20.. + 19] by using the command nice (or snice). This means that
the dynamic priority can be changed within the [100..139] range as needed. In this way
the users can set the relative importance of tasks it owns and the superuser can change
priorities of all the tasks in the system. The actual value of the dynamic priority of a
given taks is modified by the O(1) scheduler itself witin +5 range depending on the task’s

interactivity. The O(1) scheduler uses this mechanism to guarantee good responsiveness
of the system by decreasing the dynamic priority value (i.e. weighting higher) of the
iteractive tasks. This means that the behaviour of a task in a current epoch influences
directly the interactivity level calculated by the scheduler and together with its static
priority is used to classify the task as interactive or otherwise. This clasification has a
heuristic character and is done according to a table of the form (see sched.c)

TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
,1,1,1,0,0,0,0,0,0,0]
1,0,0,0,0,0,0,0,0,0]
0,0,0,0,0,0,0,0,0,0]

3 b b

TASK_INTERACTIVE(0): [1
TASK_INTERACTIVE(10): [1,1,0,0,0,0,0,0,0,0,
TASK_INTERACTIVE(19): [0,0,0,0,0,0,0,0,0,0,

The responsibility of the CFS scheduler is to guarentee a fair division of the available
CPU among all tasks from the fair class. This cannot result in dividing the epoch time
equally among the tasks but the schedular must necessarily take into account weights of
individual tasks which are related to their static priorities. The CFS schedular uses to
this end the following equation:

task_load
cfs_rqload’

time_slice = period (1)
where time_slice is a CPU timeslice that the task deserves (is due), period is the epoch
length (the time span of a period depends on the number of tasks in the queue and some
parameters that can be tuned by the administrator (see below), task_load — the last load
and cfs_rq_load — the weight of the fair queue.

Although the algorithm for calculating timeslices is of utmost importance but the
moment they are calculated is crucial as well. The O(1) scheduler evaluates a new timeslice
for a task when the old time quota has been used up and moves the tasks from the active
queue to the expired one. The expired queue is where tasks wait for the active ones to
consume their timeslices. Interactive tasks are reinserted into the active queue.

The CFS scheduler uses a notion of the so called dynamic time quanta which is calcu-
lated whenever a task is selected for execution. The actual length of this timeslice depends
on the current queue load. Additionally, thanks to the high resolution timer, the newly es-
tablished time quanta is determined within nanosecond accuracy. By means of the timer’s
handler the scheduler gets a chance to select a task that deserves CPU and — if needed —
performs the context switch. The CFS scheduler tries to fairly distribute the CPU time
of a given epoch among all tasks (in the fair class) in such a way that each of them gets
the same amount of the virtual runtime. For heavy tasks their virtual runtime increases
slowly; for light tasks the behaviour is just the opposite (cf. eq. 1). The CFS scheduler
selects the task which has the smallest value of the virtual runtime. Let us assume that we
have only two tasks with extreme priorities, i.e. one with the priority 100 (the heavy task)
and the other with priority 139 (the light task). According to eq. 1 the former enjoys the
longer timeslices than the latter. If the scheduler based its selection decision on their real

runtimes then the light task would get small quanta one after the other (in a file) until
the real runtime of the heavy task would get smaller than the time used by the lighter
task. Within this approach the more important task would get CPU less frequently but in
larger chuncks. Thanks to the selection process based on the normalized virtual runtime
the CF'S scheduler divides the CPU fairly which results in execution of every task once per
epoch. If a new task is added to the run queue during a current epoch then the scheduler
start imediately the new one.
A normal task experiences the following when the CFS scheduler is at work.

1. The timer generates an interrupt and the scheduler (according to its configuration)
selects a task which

e has the lowest virtual runtime

e has just changed its status from waiting to running

The dynamic timeslice is calculated according to eq. 1 for the selected task. If the
high resolution timer is used then it is set accordingly. Next, the scheduler switches
the context to allow the newly selected task to execute.

2. The task starts using CPU (executing).

3. During the next timer interrupt (sometimes also during a system call) the scheduler
examines the current state of affairs and can preempt the task if

it used all its timeslice

e there is a task with smaller virtual runtime in the tree
e there is a newly created task

e there is a task that has completed its sleeping stage
If this is the case

(a) the scheduler updates the virtual runtime according to the real runtime and
the load

(b) the scheduler adds the task into red-black tree. Then the tasks are ordered
according to the key equal to current_vruntime — min_vruntime, where cur-
rent_runtime is the virtual runtime of the current task and min_vruntime — the
smallest virtual runtime within the nodes on the tree

3 CFS scheduler tuning

Te CF'S scheduler offers a number of parameters which allow to tune its behaviour to actual
needs. These parameters can be accessed via the proc file system, i.e. a special file system
that exists only in memory and forms an interface between the kernel and the useer space.

The content of any of its files is generated when a read operation is being performed. The
kernel uses files in /proc both to export its internal data to userspace applications and to
modify kernel parameters, the CFS scheduler parameters including. This can be done by
using the sysctl command or by treating the files as the ordinary text files which can be
read or written. Thus to get the content of the /proc/sys/kernel/sched latency ns
file it is necessary to use one of the following commands:

cat /proc/sys/kernel/sched_latency_ns
sysctl sched_latency_ns

To modify its content one can use:

echo VALUE > /proc/sys/kernel/sched_latency_ns
sysctl -w sched_latency_ns=VALUE

Now, let us describe briefly some of the tunable kernel parameters of the SCF scheduler.
All of them can be found in the /proc/sys/kernel directory in files with names exactly
matching the names of these parameters.

sched_latency ns — epoch duration (length) in nanoseconds (20 ms by default)

sched_min_granularity ns — granularity of the epoch in nanoseconds (4 ms by de-
fault); the epoch length is always equal to the multiplicity of the value of this
parameter

The scheduler checks if the following inequality holds:

sched_latency_ns

nr_running >
g sched_min_granularity_ns’

where nr_running is equal to the number of tasks in the queue. If this relation is
satisfied then the scheduler realizes that there are too many task in the system and
that the epoch duration has to be increased. It is done according to the equation

period = sched_min_granularity_ns - nr_running,

i.e the length of the epoch is equal to the granularity multiplied by the number of
TASK_RUNNING tasks from the fair class. This means that for the default values of
the schedular parameters the epoch would be increased when the number of tasks
in TASK_RUNNING state is larger then five. Otherwise the epoch length would be set
to 20 ms.

sched_child _runs_first — this parameter influences the order of execution of the parent
process and its child. If it is equal to one (the default value), then the child process
will get CPU prior to its parent. If the parameter is zero — the reverse will happen.

sched_compat _yield — this parameter is used to block the current process from yielding
voluntarily CPU by setting its value to zero (the default). The process yields the
CPU by calling the sched_yield() function

6

sched_wakeup_granularity_ns — this parameter describes the ability of tasks being
waken up to preempt the current task (5 ms by default). The larger the value the
more difficult it is for the task to force the preemption.

sched _migration_cost — this parameter is used by the scheduler to determine whether
the procedure to select the next task should be called when a task is being waken
up. If the mean real runtime for the current task and the one being waken up are
smaller than this parameter (0.5 ms by default), the scheduler chooses another task.
To make this work the WAKEUP_OVERLAP feature must be active.

In case of a multiprocesor computer system the scheduler tries also to spread load over
available CPUs. In this respect the scheduler uses the following parameters:

sched_migration_cost — the cost of task migration among CPUs (0.5 ms by default)
which is used to estimate whether the code of a task is still present in a CPU cache.
If the real runtime of the task is smaller than the values of this parameter then the
scheduler assumes that it is still in the cache and tries to avoid moving the task to
another CPU during the load balancing procedure.

sched _nr_migrate —the maximum number of task the scheduler handles during the load
balancing procedure (32 by default)

The CFS scheduler makes it possible to control the time usage of real-time tasks up
to microsecond resolution:

sched_rt_runtime_us — the maximum CPU time that can be used by all the real-time
tasks (1 s by default). When this amount of time is used up these tasks must wait
for sched_rt_period_us period before the are allowed to be executed again

sched_rt_period_us — the CFS scheduler waits this amount of time (0.95 s by default)
before scheduling any of the real-time tasks again

The last parameter, namely sched _features, represents certain features of the sche-
duler that can be switched on and off during the system operation and they are described
in a separate subsection (see below).

3.1 Scheduler features

The CFS scheduler gives a system’s administrator opportunity to modify its operation by
turning on and off particular features which can be found in the /sys/kerenl/debug/-
sched_features file. When the content of this file is displayed one gets the list of all the
features available. Some of the names may be prefixed by 'NO’ which means that the given
feature has been switched off and is therefore not active. The execution of the following
commands

echo FEATURE_NAME > sched_features
echo NO_FEATURE_NAME > sched_features

results first in activating the feature FEATURE_NAME and its subsequent deactivation. The
description of the most important ones follows:?

NEW_FAIR_SLEEPERS — the feature relevant when a task is waken up. Every tasks that
is waken up gets the virtual runtime equal to the smallest virtual runtime among
the tasks in the queue. If this feature is on then this virtual runtime is additionally
decreased by sched_latency_ns. However, the new value cannot be smaller than
the virtual runtime of the task prior to its suspension.

NORMALIZED SLEEPER - this feature is taken into account when the NEW_FAIR_SLEEPERS
feature is active. By switching on the NORMALIZED_SLEEPER feature the value sched-
_latency_ns gets normalized (see above). The normalization is performed similar
to the normalization of the virtual runtime.

WAKEUP_PREEMPT - if this feature is active then the task which is waken up immediately
preempts the current task. Swiching off this feature casuses the scheduler to block the
possibility of preemption of the current task until it uses up its time slice. Moreover,
if this feature is active and there is only one running task in the system then the
scheduler will refrain from calling the procedure responsible for the selection of the
next task untill additional task is added to the queue.

START DEBIT - this feature is taken into acount during initialization of virtual runtime
for a newly created task. If this feature is active then the initial virtual runtime is
increased by the amount equal to the normalized timeslice that the task would be
allowed to use.

SYNC_WAKEUPS — this feature allows for synchronous wakening up of tasks. If active the
scheduler preempts the current task and schedules the one being waken up (WAKEUP_PREEMPT
must be active)

HRTICK — this feature is used to switch on and off the high resolution timer

DOUBLE_TICK — this feature enables to control whether the procedure checking the CPU
time consumend by the task is being called when the timer interrupt occurs. If active
the interrupts generated by the high resolution timer or the system timer cause the
scheduler to check if the task should be preempted. If not active, then only the
iterrupts generated by the high resolution timer results in the time checking.

ASYM GRAN — this feature is related to preemption and influences the granularity of wake
ups. If active the scheduler sched wakeup_granularity ns value is normalized (the
normalization is performed similar to the normalization of the virtual runtime).

2We bypass the features related to the scheduler operation on a multiprocessor machine and grouping.
See Documentation/scheduler/sched-design-CFS.txt for details.

8

