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1 Introduction

Read-copy update (RCU) is a synchronization API
that is sometimes used in place of reader-writer locks.
RCU’s read-side primitives offer extremely low over-
head and deterministic execution time. These prop-
erties imply that RCU updaters cannot block RCU
readers, which means that RCU updates can be ex-
pensive, as they must leave old versions of the data
structure in place to accommodate pre-existing read-
ers. Furthermore, these old versions must be re-
claimed after all pre-existing readers complete. The
Linux kernel offers a number of RCU implemen-
tations, the first such implementation being called
“Classic RCU”.

The RCU implementation for the -rt patchset is
unusual in that it permits read-side critical sections
to be blocked waiting for locks and due to preemp-
tion. If these critical sections are blocked for too
long, grace periods will be stalled, and the amount of
memory awaiting the end of a grace period will con-
tinually increase, eventually resulting in an out-of-
memory condition. This theoretical possibility was
apparent from the start, but when Trevor Woerner
actually made it happen, it was clear that something
needed to be done. Because priority boosting is used
in locking, it seemed natural to apply it to realtime
RCU.

Unfortunately, the priority-boosting algorithm
used for locking could not be applied straightfor-
wardly to RCU because this algorithm uses locking,
and the whole point of RCU is to avoid common-

case use of such heavy-weight operations in read-side
primitives. In fact, RCU’s read-side primitives need
to avoid common-case use of all heavyweight oper-
ations, including atomic instructions, memory bar-
riers, and cache misses. Therefore, bringing priority
boosting to RCU turned out to be rather challenging,
not because the eventual solution is all that compli-
cated, but rather due to the large number of seductive
but subtly wrong almost-solutions.

This document describes a way of providing light-
weight priority boosting to RCU, and also describes
several of the number of seductive but subtlely wrong
almost-solutions.

2 Approaches

This paper describes three approaches to priority-
boosting blocked RCU read-side critical sections.
The first approach minimizes scheduler-path over-
head and uses locking on non-fastpaths to decrease
complexity. The second approach is similar to the
first, and was in fact a higher-complexity intermedi-
ate point on the path to the first approach. The third
approach uses a per-task lock solely for its priority-
inheritance properties, which introduces the overhead
of acquiring this lock into the scheduler path, but
avoids adding an “RCU boost” component to the pri-
ority calculations. Unfortunately, this third approach
also cannot be made to reliably boost tasks blocked
in RCU read-side critical sections, so the first ap-
proach should be used to the exclusion of the other
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two. Each of these approaches is described in a fol-
lowing section, after which is a section enumerating
other roads not taken.

3 RCU Explicit Priority Boost-

ing

The solution described in this paper makes use of a
separate RCU-booster task that monitors per-CPU
arrays of lists of target tasks that have been blocked
while in an RCU read-side critical section. Overhead
is incurred only when such blocking occurs, permit-
ting the RCU read-side-acquisition primitive (e.g.,
rcu read lock()) to contain exactly the same se-
quence of instructions contained in its non-boosted
counterpart.

3.1 Data Structures

Each element of each per-CPU array is a structure
named struct rcu boost dat as shown in Figure 1.
The rbs mutex field guards all fields in the struc-
ture, rbs toboost is a list containing target tasks
that are candidates for boosting, and rbs boosted

is a list containing target tasks that have already
been boosted. The rest of the fields are statistics:
rbs blocked counts the number of RCU read-side
critical sections that were blocked (whether once
or multiple times), rbs boost attempt counts the
number of tasks that the RCU-booster task has
attempted to boost, rbs boost counts the num-
ber of such attempts in which boosting was accom-
plished, rbs unlock counts the number of outermost
rcu read unlock() operations that end a blocked
RCU read-side critical section, and rbs unboosted

counts the number of tasks whose that needed to be
unboosted by rcu read unlock(). The rbs stats[]

array tracks the number of transitions due to each
event from each state.

Figure 2 shows the task struct fields that are
used in RCU priority boosting. The rcub rbdp

is a pointer to the rcu boost dat struct on which
this task is enqueued, rcub state holds the RCU
priority-boost state for this task, and rcub entry is

1 struct rcu_boost_dat {
2 raw_spinlock_t rbs_mutex;
3 struct list_head rbs_toboost;
4 struct list_head rbs_boosted;
5 long rbs_blocked;
6 long rbs_boost_attempt;
7 long rbs_boost;
8 long rbs_unlock;
9 long rbs_unboosted;

10 long rbs_stats[][];
11 }

Figure 1: RCU-Boost Data Structure

the list entry used to enqueue this task on either the
rbs toboost or the rbs boosted lists.

1 struct rcu_boost_dat *rcub_rbdp;
2 enum rcu_boost_state rcub_state;
3 struct list_head rcub_entry;

Figure 2: RCU-Boost Task-Struct Fields

A schematic of the organization of the rcu boost

dat data structure is shown in Figure 3. The
rbs toboost fields are represented by the upper set
of elements, and the rbs boosted fields are repre-
sented by the lower set of elements. These elements
are indexed in a circular fashion based on the value
of the global index, which is named rcu boost idx.
Please note that corresponding elements in the up-
per and lower sets in the figure are guarded by the
same spinlock, the rbs mutex field. Use of this index
eliminates the need to physically move target tasks
from one locking domain to another, thus guaran-
teeing that a given task is subject to the same lock
throughout, eliminating the need for latency-prone
retry-style lock acquisition.

For a given CPU, the indexed element indicates in
which list to place target tasks that have just blocked
within an RCU read-side critical section. When a
given target task exits its outermost RCU read-side
critical section that was blocked, that task removes
itself from whatever list it was added to, and also
unboosts itself if need be.

A separate RCU priority-boosting task increments
the index periodically (modulo the size of the array),
resulting in the configuration shown in Figure 4. Af-
ter each such increments, this RCU-boost task boosts

2



Index=3

New

CPU 0

CPU 1

CPU 2

CPU 3

Boosted

Boosting Old Aging

Tasks Removed at End of
RCU Critical Section

RCU Critical Section
Tasks Removed at End of

Local List

Boost Priority

Can’t Boost
Tasks Blocked in

RCU Read−Side Critical Section

Figure 3: RCU Priority-Boosting Data Structures

the priority of those (hopefully few) target tasks that
have remained for a full time period, as well as any
previously boosted tasks that still remain in the list.
This reboosting is performed to allow for the pos-
sibility that the system administrator changed the
priority of the RCU-booster task since the last time
those tasks were boosted. Such boosting might well
be attempted concurrently with the target task re-
moving itself from the list. Much care is required
in order to avoid boosting a target task just after it
removes itself from its list. Failure to avoid this sce-
nario could result in an otherwise low-priority task
remaining boosted indefinitely, in turn causing other
high-priority realtime tasks to miss their deadlines.

The state machine described in the next section
prevents such failure scenarios from occurring.

3.2 State Diagram

Each task has an associated RCU-booster state,
which can take on the values shown in Figure 5. Tasks
in the RCU BOOST BLOCKED state are linked into the
uppermost of the two sets of lists shown in Figure 3,
while tasks in the RCU BOOSTED state are linked into
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AgingOldBoostingNew
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Figure 4: RCU Priority-Boosting Data Structures Af-
ter Increment

the lower of these two sets of lists, and tasks in the
RCU BOOST IDLE state are not linked into either set
of lists. The black state transitions are traversed by
the task, while the red transitions are traversed by
the RCU-booster task.

All priority boosting is carried out by the RCU-
booster task, while all priority unboosting is carried
out by the target task. This approach ensures that
unboosting is exact, preventing low-priority tasks
from running at high priority any longer than nec-
essary.

3.3 Per-State Details

The purpose of the individual states are as follows:

• RCU BOOST IDLE: This is the initial state. A tar-
get task resides in this state when not in an
RCU read-side critical section, or when in an
RCU read-side critical section that has not yet
blocked.

• RCU BOOST BLOCKED: The target task has
blocked while in an RCU read-side critical sec-
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tion.

• RCU BOOSTED: The RCU-booster task has com-
pleted boosting the target task’s priority.

3.4 Events

The important events for a target task are (1) be-
ing blocked in an RCU read-side critical section and
(2) completing a previously blocked RCU read-side
critical section. When a target task is blocked in an
RCU read-side critical section, it always adds itself
to the current list of its per-CPU array. Conversely,
when a target task completes a previously blocked
RCU read-side critical section, it removes itself from
this list. If its priority has been boosted, it also un-
boosts itself.

The important event for the RCU-booster task is
boosting a target task’s priority.

3.5 Implementation

3.5.1 Helper Functions

Figure 6 shows functions used to access the proper
element of the arrays used to track tasks that are
candidates for RCU priority boosting (see Figure 3
for a schematic of the overall data structure and Fig-
ure 1 for the C-language definition of each element of
the per-CPU arrays). The rcu rbd new() function is
used by newly blocked tasks adding themselves to the

1 struct rcu_boost_dat *rcu_rbd_new(void)
2 {
3 int cpu = raw_smp_processor_id();
4 int idx = rcu_boost_idx;
5
6 smp_read_barrier_depends(); barrier();
7 if (unlikely(idx < 0))
8 return (NULL);
9 return &per_cpu(rcu_boost_dat, cpu)[idx];

10 }
11
12 struct rcu_boost_dat *rcu_rbd_boosting(int cpu)
13 {
14 int idx = (rcu_boost_idx + 1) & (RCU_BOOST_ELEMENTS - 1);
15
16 return &per_cpu(rcu_boost_dat, cpu)[idx];
17 }

Figure 6: Data-Structure Access Helper Functions

data structure, while the rcu rbd boosting() func-
tion is used by the RCU-booster task to locate tasks
in need of boosting.

The rcu rbd new() function returns the rcu

boost dat element be used for newly blocked tasks
adding themselves to the data structure. Lines 3 and
4 pick up the CPU ID and the current value of the in-
dex, respectively. Line 6 issues any memory barriers
needed on Alpha and prevents the compiler from op-
timizing bugs into this function on other platforms.
Line 7 checks to see if this function is being called be-
fore the RCU-booster task has completed initializa-
tion, and, if so, line 8 returns. Otherwise, line 9 uses
the CPU and index to select the right rcu boost dat

structure to queue on.

The rcu rbd boosting is simpler because it is in-
voked only from the RCU-booster task, and therefore
cannot run concurrently with a counter increment
(although this could change if there are ever multiple
RCU-booster tasks). Line 14 selects the index that
was least-recently the target of tasks newly blocked
in RCU read-side critical sections, and line 16 uses
the index and the specified CPU to select the right
rcu boost dat structure to boost from.

The rcu boost prio() and rcu unboost prio()

functions shown in Figure 7 boost and unboost the
specified task’s RCU priority.

Lines 6-10 of rcu boost prio() get the priority of
the current (RCU-booster) task, setting the target
task’s rcu prio field to one notch less-favored prior-
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1 static void rcu_boost_prio(struct task_struct *taskp)
2 {
3 unsigned long oldirq;
4 int rcuprio;
5
6 spin_lock_irqsave(&current->pi_lock, oldirq);
7 rcuprio = rt_mutex_getprio(current) + 1;
8 if (rcuprio >= MAX_USER_RT_PRIO)
9 rcuprio = MAX_USER_RT_PRIO - 1;
10 spin_unlock_irqrestore(&current->pi_lock, oldirq);
11 spin_lock_irqsave(&taskp->pi_lock, oldirq);
12 if (taskp->rcu_prio != rcuprio) {
13 taskp->rcu_prio = rcuprio;
14 if (taskp->rcu_prio != taskp->prio)
15 rt_mutex_setprio(taskp, taskp->rcu_prio);
16 }
17 spin_unlock_irqrestore(&taskp->pi_lock, oldirq);
18 }
19
20 static void rcu_unboost_prio(struct task_struct *taskp)
21 {
22 int nprio;
23 unsigned long oldirq;
24
25 spin_lock_irqsave(&taskp->pi_lock, oldirq);
26 taskp->rcu_prio = MAX_PRIO;
27 nprio = rt_mutex_getprio(taskp);
28 if (nprio > taskp->prio)
29 rt_mutex_setprio(taskp, nprio);
30 spin_unlock_irqrestore(&taskp->pi_lock, oldirq);
31 }

Figure 7: Priority-Boost Helper Functions

ity if possible, and to the least-favored realtime pri-
ority otherwise. The rt mutex getprio() primitive
is used to actually obtain this priority. Lines 11-17
boost the target task’s priority, with line 12 check-
ing to see if the task has already been RCU-boosted
to the desired priority. If not, line 13 updates the
task’s rcu prio field, line 14 checks to see if the task
is already running at the desired priority (perhaps
due to lock-based boosting), and, if not, line 15 does
the actual priority change. Note that this function
is capable of decreasing a task’s priority, as will be
described below.

Lines 25-30 of rcu unboost prio() unboost the
target task, again using rt mutex getprio() and
rt mutex setprio() to manipulate the priorities.
Line 26 updates the task’s rcu prio field to prevent
any future priority calculations from adding an RCU
component to the priority. Line 28 checks to see if
the task is already running at a less-favorable priority
before actually deboosting on line 29.

Both functions hold the given task’s pi lock in
order to properly synchronize with other changes
to that task’s priority. In addition, the rt mutex

getprio() and rt mutex setprio() primitives have
been modified to take the task’s rcu prio field into
account in the priority calculations, ensuring that
possible lock-based priority deboosts will not remove
the RCU priority boost.

3.5.2 Blocking Within an RCU Read-Side

Critical Section

The scheduler contains a call to rcu preempt boost,
which is shown on lines 1-5 of Figure 8. This macro
checks to see if the current task is in an RCU read-
side critical section, and, if so, invokes the rcu

preempt boost() function to place the calling task
on the priority-boost lists.

The rcu preempt boost() function runs with
irqs disabled, and is potentially invoked with irqs al-
ready disabled. Line 12 disables irqs, and line 13
identifies the struct rcu boost dat that is to be
used Line 14 then checks to see whether the RCU-
booster task has started, and lines 15-18 restore irqs
and returns if so.

Otherwise, line 19 acquires the lock. Note that
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1 #define rcu_preempt_boost() \
2 do { \
3 if (unlikely(current->rcu_read_lock_nesting > 0)) \
4 __rcu_preempt_boost(); \
5 } while (0)
6
7 void __rcu_preempt_boost(void)
8 {
9 struct rcu_boost_dat *rbdp;
10 unsigned long oldirq;
11
12 local_irq_save(oldirq);
13 rbdp = rcu_rbd_new();
14 if (rbdp == NULL) {
15 local_irq_restore(oldirq);
16 printk("Preempted RCU too early.\n");
17 return;
18 }
19 spin_lock(&rbdp->rbs_mutex);
20 rbdp->rbs_blocked++;
21 rcu_boost_dat_stat_block(rbdp, current->rcub_state);
22 if (current->rcub_state != RCU_BOOST_IDLE) {
23 spin_unlock_irqrestore(&rbdp->rbs_mutex, oldirq);
24 return;
25 }
26 current->rcub_state = RCU_BOOST_BLOCKED;
27 list_add_tail(&current->rcub_entry, &rbdp->rbs_toboost);
28 current->rcub_rbdp = rbdp;
29 spin_unlock_irqrestore(&rbdp->rbs_mutex, oldirq);
30 }

Figure 8: rcu preempt boost()

the index can change during this time, but because
the index must be incremented three times in order
for the RCU-booster task to get to this entry, this
situation is unlikely to result in premature boosting.
Lines 20-21 gather statistics.

Lines 22-25 check to see if this task is already on
the priority-boost lists, and if so, restores irqs and re-
turns. Otherwise, line 26 updates the task’s state to
indicate that this task has blocked in its current RCU
read-side critical section, line 27 adds it to the appro-
priate priority-boost list, line 28 caches a pointer to
the list in the task structure, and line 29 releases the
lock and restores irqs.

3.5.3 Boosting The Priority of a List of Tasks

The rcu boost one reader list function shown in
Figure 9 is invoked by the RCU-booster task to
priority-boost all tasks still remaining on the spec-
ified rcu boost dat structure. The boosting is done
under the protection of this structure’s mutex, but
this mutex is periodically dropped to allow the RCU-

1 static void rcu_boost_one_reader_list(struct rcu_boost_dat *rbdp)
2 {
3 LIST_HEAD(list);
4 unsigned long oldirq;
5 struct task_struct *taskp;
6
7 spin_lock_irqsave(&rbdp->rbs_mutex, oldirq);
8 list_splice_init(&rbdp->rbs_toboost, &list);
9 list_splice_init(&rbdp->rbs_boosted, &list);

10 while (!list_empty(&list)) {
11 spin_unlock_irqrestore(&rbdp->rbs_mutex, oldirq);
12 schedule_timeout_uninterruptible(1);
13 spin_lock_irqsave(&rbdp->rbs_mutex, oldirq);
14 if (list_empty(&list))
15 break;
16 taskp = list_entry(list.next, typeof(*taskp), rcub_entry);
17 list_del_init(&taskp->rcub_entry);
18 rbdp->rbs_boost_attempt++;
19 if (taskp->rcub_state == RCU_BOOST_IDLE) {
20 list_add_tail(&taskp->rcub_entry, &rbdp->rbs_toboost);
21 rcu_boost_dat_stat_boost(rbdp, taskp->rcub_state);
22 continue;
23 }
24 rcu_boost_prio(taskp);
25 taskp->rcub_state = RCU_BOOSTED;
26 rbdp->rbs_boost++;
27 rcu_boost_dat_stat_boost(rbdp, RCU_BOOST_BLOCKED);
28 list_add_tail(&taskp->rcub_entry, &rbdp->rbs_boosted);
29 }
30 spin_unlock_irqrestore(&rbdp->rbs_mutex, oldirq);
30 }

Figure 9: rcu boost one reader list()
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booster task to sleep, thus avoiding imposing exces-
sive scheduling latencies on realtime tasks. Lines 8
and 9 pull the contents of the rcu boost dat struc-
ture’s two lists onto a local list. This has the effect of
reboosting tasks, which is useful in case the system
administrator manually increased the RCU-booster
task’s priority since the previous boost. Line 10 se-
quences through the list, and lines 11-13 sleep as
noted earlier. Lines 14-15 recheck the list to allow for
the possibility of the tasks having exited their RCU
read-side critical sections in the meantime, thus re-
moving themselves from the list.

Line 16-17 removes the first task on the list, and
line 18 updates statistics. Lines 19-23 reject tasks
that are in the wrong state (but counts them), and
puts them back on the rbs toboost list. Line 24
boosts the task, line 25 updates state to indicate that
this task has had its priority boosted, lines 26-27 ac-
cumulate statistics, and line 28 puts the task on the
rbs boosted list. If the task is still present after the
index has been incremented four more times, it may
be boosted again, as noted above, allowing any re-
cent changes in the priority of the RCU-booster task
to be taken into account.

3.5.4 Sequencing Through Lists of Tasks

1 static int rcu_booster(void *arg)
2 {
3 int cpu;
4 struct sched_param sp;
5
6 sp.sched_priority = PREEMPT_RCU_BOOSTER_PRIO;
7 sched_setscheduler(current, SCHED_RR, &sp);
8 current->flags |= PF_NOFREEZE;
9 do {
10 rcu_boost_idx = (rcu_boost_idx + 1) % RCU_BOOST_ELEMENTS;
11 for_each_possible_cpu(cpu) {
12 rcu_boost_one_reader_list(rcu_rbd_boosting(cpu));
13 }
14 schedule_timeout_uninterruptible(HZ / 100);
15 rcu_boost_dat_stat_print();
16 } while (!kthread_should_stop());
17 return 0;
18 }

Figure 10: rcu booster()

The rcu booster() function shown in Figure 10
periodically cycles through the lists of tasks that

may be in need of priority boosting, running as a
kernel thread. Lines 6-8 set this task to its de-
fault realtime priority, and prevent it from interfer-
ing with suspend processing. The loop starting at
line 9 makes one pass through each CPU’s candi-
date RCU-boost target tasks, with line 10 advanc-
ing the index so as to ”age” all tasks that have
blocked while in their current RCU read-side criti-
cal section. This advancing of the index will require
special coordination should it ever be necessary to
have multiple RCU-booster tasks. Lines 11-13 invoke
rcu boost one reader list() on each CPU’s most-
aged rcu boost dat structure in order to boost any
tasks that have been blocked for a long time in an
RCU read-side critical section for each CPU. Line 14
waits for about 10 milliseconds, which means that
tasks must remain in their RCU read-side critical
sections for at least 30 milliseconds to become candi-
dates for boosting – and they have to have blocked at
least once during that time. This seems like a good
default setting, but more experience is required to
determine what really is appropriate. Line 15 prints
statistics if the PREEMPT RCU BOOST STATS config pa-
rameter is set.

3.5.5 Unboosting

Figure 11 shows rcu read unlock unboost(), which
is invoked from rcu read unlock() to unboost the
current task’s priority if needed. The call from rcu

read unlock() is placed so that rcu read unlock

unboost() is only invoked from the end of the out-
ermost of a set of nested RCU read-side critical sec-
tions. This function is an inlineable wrapper around
rcu read unlock unboost(), which it invokes only

if the current task was blocked during the preceding
RCU read-side critical section.

This same figure also shows the rcu read

unlock unboost() helper function starting at line 7.
Line 12 retrieves the pointer to the rcu boost dat

that was cached by line 28 of rcu preempt boost()

in Figure 8. Line 13 (back in Figure 11) then acquires
the corresponding lock. Line 15 removes this task
from whatever list it is on, line 16 counts the unlock,
and line 17 NULLs out the cached pointer. Line 19
accumulates statistics, and lines 20-23 unboost the
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1 static inline void rcu_read_unlock_unboost(void)
2 {
3 if (unlikely(current->rcub_state != RCU_BOOST_IDLE))
4 __rcu_read_unlock_unboost();
5 }
6
7 static void __rcu_read_unlock_unboost(void)
8 {
9 unsigned long oldirq;
10 struct rcu_boost_dat *rbdp;
11
12 rbdp = current->rcub_rbdp;
13 spin_lock_irqsave(&rbdp->rbs_mutex, oldirq);
14
15 list_del_init(&current->rcub_entry);
16 rbdp->rbs_unlock++;
17 current->rcub_rbdp = NULL;
18
19 rcu_boost_dat_stat_unlock(rbdp, current->rcub_state);
20 if (current->rcub_state == RCU_BOOSTED) {
21 rcu_unboost_prio(current);
22 rbdp->rbs_unboosted++;
23 }
24 current->rcub_state = RCU_BOOST_IDLE;
25 spin_unlock_irqrestore(&rbdp->rbs_mutex, oldirq);
26 }

Figure 11: rcu read unlock unboost()

task’s priority and count the unboost, but only if the
task was boosted. Line 24 sets the task’s state to in-
dicate that it is no longer in an RCU read-side critical
section in which it has blocked, and, finally, line 25
releases the lock.

3.5.6 Initialization

Figure 12 shows the early-boot initialization code.
This is quite straightforward, aside from the memory
barrier on line 29 to prevent other CPUs from seeing
rcu boost idx with a non-negative value but unini-
tialized values for the structures. Just in case early
boot processing ever goes SMP!

However, init rcu boost early() is called early
in the boot process, as the name suggests – early
enough, in fact, that the scheduler is not yet func-
tional. Therefore, the creation of the RCU-booster
task must be deferred until later, when the scheduler
is functional. Figure 13 shows the init rcu boost

late() function, which simply spawns the RCU-
booster task and then returns.

1 static void init_rcu_boost_early(void)
2 {
3 struct rcu_boost_dat *rbdp;
4 int cpu;
5 int i;
6
7 for_each_possible_cpu(cpu) {
8 rbdp = per_cpu(rcu_boost_dat, cpu);
9 for (i = 0; i < RCU_BOOST_ELEMENTS; i++) {

10 rbdp[i].rbs_mutex =
11 RAW_SPIN_LOCK_UNLOCKED(rbdp[i].rbs_mutex);
12 INIT_LIST_HEAD(&rbdp[i].rbs_toboost);
13 INIT_LIST_HEAD(&rbdp[i].rbs_boosted);
14 rbdp[i].rbs_blocked = 0;
15 rbdp[i].rbs_boost_attempt = 0;
16 rbdp[i].rbs_boost = 0;
17 rbdp[i].rbs_unlock = 0;
18 rbdp[i].rbs_unboosted = 0;
19 #ifdef CONFIG_PREEMPT_RCU_BOOST_STATS
20 {
21 int j, k;
22
23 for (j = 0; j < N_RCU_BOOST_DAT_EVENTS; j++)
24 for (k = 0; k <= N_RCU_BOOST_STATE; k++)
25 rbdp[i].rbs_stats[j][k] = 0;
26 }
27 #endif /* #ifdef CONFIG_PREEMPT_RCU_BOOST_STATS */
28 }
29 smp_wmb();
30 rcu_boost_idx = 0;
31 }
32 }

Figure 12: init rcu boost early()
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1 void init_rcu_boost_late(void)
2 {
3 int i;
4
5 printk(KERN_ALERT "Starting RCU priority booster\n");
6 rcu_boost_task = kthread_run(rcu_booster, NULL, "RCU Prio Booster");
7 if (IS_ERR(rcu_boost_task)) {
8 i = PTR_ERR(rcu_boost_task);
9 printk(KERN_ALERT
10 "Unable to create RCU Priority Booster, errno %d\n", -i);
11 rcu_boost_task = NULL;
12 }
13 }

Figure 13: init rcu boost late()

3.5.7 Statistics Gathering and Output

1 static inline void
2 rcu_boost_dat_stat(struct rcu_boost_dat *rbdp,
3 int event,
4 enum rcu_boost_state oldstate)
5 {
6 if (oldstate >= RCU_BOOST_IDLE &&
7 oldstate <= RCU_BOOSTED) {
8 rbdp->rbs_stats[event][oldstate]++;
9 } else {
10 rbdp->rbs_stats[event][N_RCU_BOOST_STATE]++;
11 }
12 }
13
14 #define rcu_boost_dat_stat_block(rbdp, oldstate) \
15 rcu_boost_dat_stat(rbdp, RCU_BOOST_DAT_BLOCK, oldstate)
16 #define rcu_boost_dat_stat_boost(rbdp, oldstate) \
17 rcu_boost_dat_stat(rbdp, RCU_BOOST_DAT_BOOST, oldstate)
18 #define rcu_boost_dat_stat_unlock(rbdp, oldstate) \
19 rcu_boost_dat_stat(rbdp, RCU_BOOST_DAT_UNLOCK, oldstate)

Figure 14: rcu boost dat stat()

Figure 14 shows the statistics-accumulation func-
tions and macros, which are defined only if the
PREEMPT RCU BOOST STATS configuration parameter
is set. The rcu boost dat stat() function incre-
ments the element of the rbs stats[] array selected
by the event and state, but only for valid state val-
ues. Invalid state values cause one of the special
invalid-state elements to be incremented, depend-
ing on the event. The rcu boost dat stat block(),
rcu boost dat stat boost(), and rcu boost dat

stat unlock() macros serve as short-hand wrappers
for the rcu boost dat stat function.

Figure 15 shows arrays used to assist in printk()-
ing of statistics. The labels defined in rcu boost

1 static char *rcu_boost_state_event[] = {
2 "block: ",
3 "boost: ",
4 "unlock: ",
5 };
6
7 static char *rcu_boost_state_error[] = {
8 /*ibBe*/
9 " ?", /* block */

10 "! ?", /* boost */
11 "? ?", /* unlock */
12 };

Figure 15: Tables for rcu boost dat stat print()

state event[] serve as output line labels, while the
characters defined in rcu boost state error[] are
used to note invalid state transitions. The “?” char-
acter indicates a completely invalid state, either be-
cause the state itself is undefined or because there is
an enclosing check eliminating it, while the “!” char-
acter indicates a list-manipulation error. The space
character indicates a valid state transition.

Figure 16 shows accumulation and printing of
statistics. This function refuses to take action un-
less sufficient time has elapsed since the last time
it printed statistics, as can be seen from lines 12-14
and line 56. Locking will be required should multiple
RCU-booster tasks ever become necessary. Lines 15-
39 sum the corresponding statistical counters from
all of the rcu boost dat structures, and lines 40-55
print out the sums.
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1 static void rcu_boost_dat_stat_print(void)
2 {
3 char buf[N_RCU_BOOST_STATE * (sizeof(long) * 3 + 2) + 2];
4 int cpu;
5 int event;
6 int i;
7 static time_t lastprint = 0;
8 struct rcu_boost_dat *rbdp;
9 int state;
10 struct rcu_boost_dat sum;
11
12 if (xtime.tv_sec - lastprint <
13 CONFIG_PREEMPT_RCU_BOOST_STATS_INTERVAL)
14 return;
15 sum.rbs_blocked = 0;
16 sum.rbs_boost_attempt = 0;
17 sum.rbs_boost = 0;
18 sum.rbs_unlock = 0;
19 sum.rbs_unboosted = 0;
20 for_each_possible_cpu(cpu)
21 for (i = 0; i < RCU_BOOST_ELEMENTS; i++) {
22 rbdp = per_cpu(rcu_boost_dat, cpu);
23 sum.rbs_blocked += rbdp[i].rbs_blocked;
24 sum.rbs_boost_attempt += rbdp[i].rbs_boost_attempt;
25 sum.rbs_boost += rbdp[i].rbs_boost;
26 sum.rbs_unlock += rbdp[i].rbs_unlock;
27 sum.rbs_unboosted += rbdp[i].rbs_unboosted;
28 }
29 for (event = 0; event < N_RCU_BOOST_DAT_EVENTS; event++)
30 for (state = 0; state <= N_RCU_BOOST_STATE; state++) {
31 sum.rbs_stats[event][state] = 0;
32 for_each_possible_cpu(cpu) {
33 for (i = 0; i < RCU_BOOST_ELEMENTS; i++) {
34 sum.rbs_stats[event][state]
35 += per_cpu(rcu_boost_dat,
36 cpu)[i].rbs_stats[event][state];
37 }
38 }
39 }
40 printk(KERN_ALERT
41 "rcu_boost_dat: idx=%d "
42 "b=%ld ul=%ld ub=%ld boost: a=%ld b=%ld\n",
43 rcu_boost_idx,
44 sum.rbs_blocked, sum.rbs_unlock, sum.rbs_unboosted,
45 sum.rbs_boost_attempt, sum.rbs_boost);
46 for (event = 0; event < N_RCU_BOOST_DAT_EVENTS; event++) {
47 i = 0;
48 for (state = 0; state <= N_RCU_BOOST_STATE; state++) {
49 i += sprintf(&buf[i], " %ld%c",
50 sum.rbs_stats[event][state],
51 rcu_boost_state_error[event][state]);
52 }
53 printk(KERN_ALERT "rcu_boost_dat %s %s\n",
54 rcu_boost_state_event[event], buf);
55 }
56 lastprint = xtime.tv_sec;
57 }

Figure 16: rcu boost dat stat print()

3.5.8 Possible Future Enhancements

The act of getting any piece of software working (or
even sort of working) almost always immediately sug-
gested enhancements, and RCU priority boosting is
no exception. This following list includes a few pos-
sibilities.

1. Boosting upon OOM. This is currently to be
accomplished by having the RCU-booster task
more aggressively boost when it becomes aware
of OOM conditions, for example, reducing or
omitting timed sleeps. Alternatively, one could
activate the “canary” mechanism upon OOM,
which could downgrade realtime tasks to non-
realtime status, allowing the normal aging mech-
anisms to boost any blocked task that might be
holding up a grace period.

2. Successive boosting to ever-higher priorities.
This will likely be required in cases where the
system administrator manually increases the pri-
ority of the RCU-booster task. The intent in this
case is no doubt to kick some laggart RCU read-
side critical section, which won’t happen if the
corresponding task has already been boosted.
This is deferred until needed.

3. Use of multiple per-CPU or per-NUMA-node
RCU booster tasks. This will undoubtedly be
required for large systems, but is deferred until
needed.

4 RCU Priority Boosting With

Minimal Scheduler-Path

Overhead

The solution described in this paper makes use of a
separate RCU-booster task that monitors per-CPU
arrays of lists of target tasks that have been blocked
while in an RCU read-side critical section. Overhead
is incurred only when such blocking occurs, permit-
ting the RCU read-side-acquisition primitive (e.g.,
rcu read lock()) to contain exactly the same se-
quence of instructions contained in its non-boosted
counterpart.
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4.1 Data Structures

Each element of each per-CPU array is a structure
named struct rcu boost dat as shown in Figure 17.
The rbs mutex field guards all fields in the struc-
ture, rbs toboost is a list containing target tasks
that are candidates for boosting, and rbs boosted

is a list containing target tasks that have already
been boosted. The next three fields govern interac-
tions between the RCU-booster task and an exiting
target task: (1) rbs target wq is a wait queue for
exiting target tasks, which ensures that the RCU-
booster task has finished accessing the target be-
fore the target exits, (2) rbs booster wq is a wait
queue for the RCU-booster task, which ensures that
any exiting target task has completed blocking be-
fore the RCU-booster task reuses the rbs target wq

field, and (3) rbs exit done is the flag that the
RCU-booster conditions its wait event() call on.
The rest of the fields are statistics: rbs blocked

counts the number of RCU read-side critical sec-
tions that were blocked (whether once or multi-
ple times), rbs boost attempt counts the number
of tasks that the RCU-booster task has attempted
to boost, rbs boost wrongstate counts the num-
ber of such attempts that were abandoned due to
the target task being in the wrong state, rbs boost

cmpxchgfail counts the number of such attempts
that were abandoned due to concurrent state ma-
nipulation by some other task, rbs boost start

counts the number of such attempts in which boost-
ing was started, rbs boost end counts the number of
such attempts in which boosting was completed nor-
mally, rbs unlock counts the number of outermost
rcu read unlock() operations that end a blocked
RCU read-side critical section, and rbs unboosted

counts the number of tasks whose boosting had to be
backed out due to a concurrent rcu read unlock().
The rbs stats[] array tracks the number of tran-
sitions due to each event from each state. However,
these structures are organized as described in Sec-
tion 3.

This approach uses the same task-struct fields as
that of Section 3, shown in Figure 2, with the addition
of a pointer to a struct rcu boost dat named rcub

rbdp wq, which is used to mediate exit() processing.

1 struct rcu_boost_dat {
2 raw_spinlock_t rbs_mutex;
3 struct list_head rbs_toboost;
4 struct list_head rbs_boosted;
5 wait_queue_head_t rbs_target_wq;
6 wait_queue_head_t rbs_booster_wq;
7 int rbs_exit_done;
8 long rbs_blocked;
9 long rbs_boost_attempt;

10 long rbs_boost_wrongstate;
11 long rbs_boost_cmpxchgfail;
12 long rbs_boost_start;
13 long rbs_boost_end;
14 long rbs_unboosted;
15 long rbs_unlock;
16 long rbs_stats[][];
17 }

Figure 17: RCU-Boost Data Structure (Complex)

Note that boosting might well be attempted con-
currently with the target task removing itself from
the list. Much care is required in order to avoid boost-
ing a target task just after it removes itself from its
list. Failure to avoid this scenario could result in an
otherwise low-priority task remaining boosted indef-
initely, in turn causing other high-priority realtime
tasks to miss their deadlines. Worse yet, a task being
boosted could call exit() immediately after exiting
its critical section, possibly resulting in memory cor-
ruption due to the RCU-booster task attempting to
unboost it after it had been completely removed from
the system.

The state machine described in the next section
prevents these failure scenarios from occurring.

4.2 State Diagram

Each task has an associated RCU-booster state,
which can take on the values shown in Figure 18.
Tasks in any of the yellow states are linked into the
uppermost of the two sets of lists shown in Figure 3,
tasks in any of the red states are linked into the
lower of these two sets of lists, and tasks in any of
the unshaded states are not linked into either set of
lists. The black state transitions are traversed by the
task, while the red transitions are traversed by the
RCU-booster task. The double-walled states may be
exited either of these two, requiring that the state
value be atomically manipulated. Fortunately, the
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RCU-booster task can only make three consecutive
changes to the state before reaching a state that can
only be exited by the task itself. Therefore, the num-
ber of consecutive compare-and-exchange failures for
the task is limited to three, permitting O(1) task-side
state change.1

When a task resides in any of the single-walled
states, however, the state may be manipulated non-
atomically by the sole task permitted to exit that
state.

Similarly, priority manipulations in a state that can
be exited by the RCU-booster task are carried out by
the RCU-booster task, even if that state can also be
exited by the target task – concurrent manipulation
of priorities does not reduce the number of states,
but does increase the probability of bugs. However,
priority manipulations in a state that can only be
exited by the target task are carried out by the target
task.

4.3 Per-State Details

The purpose of the individual states are as follows:

• RCU BOOST IDLE: This is the initial state. A tar-
get task resides in this state when not in an
RCU read-side critical section, or when in an
RCU read-side critical section that has not yet
blocked.

• RCU BOOST BLOCKED: The target task has
blocked while in an RCU read-side critical sec-
tion.

• RCU BOOSTING: The RCU-booster task has be-
gun boosting the target task’s priority.

• RCU BOOSTED: The RCU-booster task has com-
pleted boosting the target task’s priority.

• RCU UNBOOST IDLE: The target task exited its
RCU read-side critical section while in the pro-
cess of being boosted. This task has removed
itself from its list, but it is the responsibility of

1The locking design used in the actual implementation fur-

ther limits the number of consecutive compare-and-exchange

failures to one.

the RCU-booster task to back out of any boost-
ing that has taken place.

• RCU UNBOOST BLOCKED: The target task not only
exited its RCU read-side critical section, but en-
tered another one and further was blocked before
the RCU-booster task managed to finish boost-
ing. The target task will have added itself back
to the appropriate list, which might well be a
different one than it was one before. This situ-
ation will need to be addressed if there are ever
per-CPU RCU-booster tasks.

• RCU UNBOOST EXITING: The target task not only
exited its RCU read-side critical section, but
also managed to invoke exit() before the RCU-
booster task managed to finish boosting. To
avoid memory corruption, the target task must
wait for the RCU-booster task to get done ma-
nipulating it before completing the exit() code
path.

• RCU EXIT OK: The RCU-booster task has fin-
ished manipulating the target task, which may
therefore safely complete the exit() code path.
This is the final state for each target task.

4.4 Events

The important events for a target task are (1) being
blocked in an RCU read-side critical section, (2) com-
pleting a previously blocked RCU read-side critical
section, and (3) invoking exit(). When a target task is
blocked in an RCU read-side critical section, it always
adds itself to the current list of its per-CPU array.
Conversely, when a target task completes a previously
blocked RCU read-side critical section, it removes it-
self from this list. If priority boosting has completed,
it also unboosts itself. During exit() processing, the
target task must wait for the RCU-booster task to
complete any concurrent boost/unboost actions.

The important events for the RCU-booster task are
(1) starting to boost a target task’s priority, (2) fin-
ishing boosting a target task’s priority, and (3) un-
boosting a target task.
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rcu_read_unlock()
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rcu_read_unlock()

blocked
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Figure 18: RCU Priority-Boosting State Diagram (Complex)

5 RCU Priority Boosting With

Per-Task Lock

One of the issues with the approach described in the
previous section is that RCU boosting must be ex-
plicitly accounted for in all task-priority calculations.
The approach described in this section avoids this by
providing a per-task lock whose main purpose is to
provide priority-boosting to the target tasks, and also
has a somewhat simpler state machine. This leads
to a corresponding drawback, namely, that processes
blocking in RCU read-side critical sections incur a
latency penalty corresponding to the overhead of ac-
quiring this additional lock.

Another drawback that became apparent only after
extensive experimentation is that this method cannot
work completely reliably. It is possible for the target
task to block waiting for its own lock in the (unlikely,
but possible) case where the RCU-booster task has
just boosted it, but not yet released the lock. In this
case, the target task will block waiting for the lock,
and, if it is sufficiently low priority, never get a chance

to run again. Since it does not yet hold the lock, the
RCU-booster task is unable to priority boost it.

You should therefore instead use the approach de-
scribed in Section 4.

Nevertheless, this approach is described in some
detail in the hope that someone will figure out a way
to make it work. After all, it is a bit simpler. Too
bad about it not working in all cases!

5.1 Data Structures

The data structures are very similar to those called
out in Section 4.1.

5.2 State Diagram

Figure 19 shows the state diagram for the per-task-
lock version of RCU priority boosting. This fairly
closely resembles the one shown in the previous sec-
tion, but is slightly simpler, having one fewer node
and fewer edges.

Target tasks in any of the yellow states are linked
into the uppermost of the two sets of lists shown
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in Figure 3, target tasks in any of the red states
are linked into the lower of these two sets of lists,
and target tasks in any of the unshaded states are
not linked into either set of lists. Target tasks in
shaded states hold the per-task lock, and the RCU-
booster task might or might not hold a target task’s
per-task lock while the target task is in any of
the RCU END BOOST IDLE, RCU END BOOST BLOCKED,
or RCU END BOOST EXITING states. The black state
transitions are traversed by the task, while the red
transitions are traversed by the RCU-booster task.
The double-walled states may be exited either of
these two, requiring that the state value be atomi-
cally manipulated.

5.3 Per-State Details

The purpose of the individual states are as follows:

• RCU BOOST IDLE: This is the initial state. A tar-
get task resides in this state when not in an
RCU read-side critical section, or when in an
RCU read-side critical section that has not yet
blocked. The task does not hold the per-task
lock.

• RCU BOOST BLOCKED: The target task has
blocked while in an RCU read-side critical sec-
tion, and holds its per-task lock. The target task
will release its per-task lock upon exiting this
state, so the RCU-booster task should never see
this state. Of course, this state is the Achilles’s
heel of this approach. The target task might
block on the lock, and never get a chance to run
again. There are a number of amusing (but bro-
ken) strategies one might use, including reader-
writer locks that the target task attempts to ac-
quire recursively and the like.

• RCU BOOSTING: The RCU-booster task has be-
gun boosting the target task’s priority. It first
changes state, and only then acquires the target
task’s per-task lock. The target task can see this
state either before or after the RCU-booster task
has blocked on its per-task lock, but either way
removes itself from the list and changes state to

RCU END BOOST IDLE – and only then releases its
per-task lock.

• RCU END BOOST IDLE: The target task completed
its RCU read-side critical section after (or while
in the process of) being boosted. Once the RCU-
booster task acquires the lock, it will transition
the state to RCU BOOST IDLE, then release the
lock.

• RCU END BOOST BLOCKED: The target task not
only exited its RCU read-side critical section,
but entered another one and further was blocked
before the RCU-booster task managed to ac-
quire the target task’s lock. The target task will
have added itself back to the appropriate list,
and will hold its own per-task lock. Similarly to
RCU BOOST BLOCKED, the target task will change
state to RCU END BOOST IDLE and only then re-
lease its per-task lock.

• RCU UNBOOST EXITING: The target task not only
exited its RCU read-side critical section, but
also managed to invoke exit() before the RCU-
booster task acquired the target task’s per-task
lock. To avoid memory corruption, the tar-
get task must wait for the RCU-booster task to
get done manipulating it before completing the
exit() code path.

• RCU EXIT OK: The RCU-booster task has fin-
ished manipulating the target task, which may
therefore safely complete the exit() code path.
This is the final state for each target task.

5.4 Events

The important events for a target task are (1) block-
ing in an RCU read-side critical section, (2) complet-
ing a previously blocked RCU read-side critical sec-
tion, and (3) invoking exit(). When a target task is
blocked in an RCU read-side critical section, it always
adds itself to the current list of its per-CPU array.
Conversely, when a target task completes a previously
blocked RCU read-side critical section, it removes it-
self from this list. If priority boosting has completed,
it also unboosts itself. During exit() processing, the
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Figure 19: RCU Lock-Based Priority-Boosting State Diagram

target task must wait for the RCU-booster task to
complete any concurrent boost/unboost actions.

The important events for the RCU-booster task
are (1) starting to boost a target task’s priority and
(2) finishing boosting a target task’s priority.

5.5 Important Safety Tip

Again, this lock-per-task approach simply does not
work reliably in all cases. It is included only because
I thought it would work, and because I feel that the
cautionary tale might be valuable.

You should instead use the approach described in
Section 4.

6 Issues and Roads Not Taken

Priority-boosting RCU read-side critical sections, al-
though simple in concept, is fraught with subtle pit-
falls. This section records some of the pitfalls that I
fell into, in the hope that it saves others the time and
trouble.

1. Aggregating lists over multiple CPUs. This
might be needed for very large systems, but wait
until needed before increasing the complexity.
However, on large systems, it probably makes
more sense to instead provide multiple RCU-
boost tasks, perhaps one per CPU or per NUMA
node.

2. Dedicating a per-task lock to priority-boosting
of target tasks. As was noted in Section 5, this
simply does not work in all cases.

3. Simpler list locking, for example, single lock
per CPU. This was rejected because it could
in greater contention between the RCU-booster
task and target tasks. With the current design
under normal conditions, contention should only
occur during rcu read unlock() and exit()

processing. Even then, multi-jiffy RCU read-side
critical sections are required for the rcu read

unlock() to contend with the RCU-booster
task. For example, if such critical sections are
blocked!

4. Immediate boosting upon blocking was rejected
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due to the additional scheduling latency it im-
poses. (Although earlier prototypes did just this,
a very few of them reliably so.)

5. Use of preempt disable() instead of local

irq disable() works, but subjects the code
to extra preemption checks upon preempt

enable().

6. Zero scheduling-path latency. The idea here is
to require that the RCU-booster task walk the
entire task list in search of tasks in need of boost-
ing. This may be necessary for some workloads,
but the overhead of the full task-list walk seems
prohibitive for any server-class workload featur-
ing large numbers of tasks.

7 Lessons Learned Along the

Way

1. Interactions with RCU read-side critical sections
are very touchy. By definition, a CPU can exit
such a critical section with very few ripples, af-
ter all, the whole point of RCU’s read-side prim-
itives is to be very lightweight. Therefore, syn-
chronizing with these primitives, as the RCU-
booster task must, is fraught with peril. It is
not that the final solution is all that complex or
difficult, it is rather that there is a very large
number of seductive but incorrect “solutions”.

2. Interacting with tasks (which might exit at any
time) can also be quite touchy. Most of the
methods used to keep a task pinned down sim-
ply keep the task structure itself pinned down.
Unfortunately, the RCU-booster task needs the
target task to be alive and able to respond, for
which a separate mechanism was (perhaps re-
dundantly) constructed.

3. The rcu init() function is called extremely
early. Not that this was a surprise, but what was
a surprise was just how many common kernel
APIs cannot be called that early. The solution is
straightforward (add a second initialization func-
tion that is called later from do basic setup(),

though there may well be a better solution), but
this nevertheless somehow managed to be a sur-
prise. The system state variable is very helpful
in marking when the scheduler becomes usable.

4. The act of designing enterprise-level “torture
tests” can have the beneficial side-effect of in-
spiring much simpler (and thus easier to test)
solutions.

5. The act of documenting a tricky algorithm can
also have the beneficial side-effect of inspiring
much simpler (and thus easier to document) so-
lutions.

I had of course encountered the last two lessons
much earlier in my career, but this problem offered a
much-needed refresher course.
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