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ABSTRACT
Read-copy update (RCU) is a light-weight synchronization
mechanism that has been used in production for well over a
decade, most recently, as part of the Linux kernel. The key
concept behind RCU is the ability of RCU update-side prim-
itives (synchronize_rcu() and call_rcu()) to wait on pre-
existing RCU read-side critical sections, which are delimited
by rcu_read_lock() and rcu_read_unlock(). The time re-
quired for all pre-existing RCU read-side critical sections to
complete is termed an RCU grace period. A common usage
pattern is to remove an element from a data structure, wait
for an RCU grace period to elapse, then free that element.

Older implementations of RCU operated by suppressing
preemption across the RCU read-side critical sections, but
more recent implementations designed for real-time use per-
mit such preemption. This can lead to a priority-inversion
problem, where a low-priority non-real-time task is preempted
within an RCU read-side critical section by several medium-
priority real-time tasks (at least one per CPU). This situa-
tion prevents any subsequent RCU grace periods from com-
pleting, which prevents the corresponding memory from be-
ing freed, which can exhaust memory, which can block a
high-priority real-time task that is attempting to allocate
memory.

This situation is similar to lock-based priority inversion,
and, as with lock-based priority inversion, and can be solved
by temporarily boosting the priority of the low-priority task
that was blocked in an RCU read-side critical section.

1. INTRODUCTION
RCU is a synchronization mechanism that allows exe-

cution to be deferred until all potentially conflicting op-
erations have completed, which greatly simplifies the de-
sign and implementation of concurrent algorithms [5]. Al-
though RCU antecedents date back to 1980 [4], RCU at-
tained widespread use only after its acceptance into the
Linux kernel in 2002, where it has since become quite heav-
ily used, as shown in Figure 1. RCU’s popularity stems
from its solution to the “existence problem” [2]. The po-
tentially conflicting operations, termed RCU read-side criti-

cal sections, are bracketed with rcu_read_lock() and rcu_

read_unlock() primitives. Production-quality implemen-
tations of these primitives scale linearly, are wait-free, are
immune to both deadlock and livelock, and incur extremely
low overheads. In fact, in server-class (CONFIG PREEMPT=n)
Linux-kernel builds, these two primitives incur exactly zero

overhead [3].1

Any statement that is not within an RCU read-side crit-
ical section is a quiescent state, and a quiescent state that
persists for a significant time period is called an extended

quiescent state. Any time period during which each thread
has occupied at least one quiescent state is a grace period.
The synchronize_rcu() primitive waits for a grace period
to elapse. Updates that cannot block may use an asyn-
chronous primitive named call_rcu(), which causes a spec-
ified function to be invoked with a specified argument at
the end of a subsequent grace period. In some (but not
all) production-quality implementations, call_rcu() sim-
ply appends a callback to a per-thread list, and is therefore
wait-free [1, 11]. Nevertheless, RCU updates do incur some
overhead, so that RCU is best-suited for read-mostly situa-
tions.

Taken together, these four primitives implement RCU’s
grace-period guarantee: a given grace period is guaranteed
to extend past the end of any pre-existing RCU read-side
critical section [12]. It is important to note that RCU pro-
vides this guarantee regardless of the memory model of the
underlying computer system.

On weakly ordered systems (a category including all com-
modity microprocessors), RCU also provides a publish-sub-
scribe guarantee via the rcu_assign_pointer() publication
and rcu_dereference() subscription primitives. These prim-
itives disable any compiler and CPU optimizations that might
otherwise result in an RCU reader seeing a pre-initialized
view of a newly published data structure. Both of these
primitives have O(1) computational complexity with small
constant, and incur zero overhead on sequentially consistent
computer systems, where “system” includes the compiler.

Although older implementations of RCU relied on dis-
abling preemption across all RCU read-side critical sections,
more recent implementations have permitted these critical
sections to be preempted in order to improve real-time schedul-
ing latency [3, 8, 10]. As noted earlier, such preemption
opens the door to a priority-inversion situation where a low-
priority task is preempted in an RCU read-side critical sec-
tion by medium-priority real-time tasks, preventing any sub-
sequent RCU grace periods from ever completing. If grace
periods never complete, the corresponding memory is never
freed, eventually running the system out of memory. The
resulting hang can be expected to block even the highest-
priority real-time tasks.

Section 2 provides an overview of the design, Section 3 de-

1Sequent’s DYNIX/ptx operating system also provided
zero-overhead RCU read-side primitives [11].
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Figure 1: RCU API Usage in the Linux Kernel

scribes code changes, Section 4 describes changes to rcutor-
ture testing, Section 5 plots out a tentative implementation
plan, and Section 6 presents concluding remarks.

2. DESIGN OVERVIEW
This section gives an overview of the design, including

controls over the boosting process (Section 2.1), additions
to data structures (Section 2.2), locking design (Section 2.3),
and limitations of RCU priority boosting (Section 2.4).

2.1 Control of Boosting
The operation of RCU priority boosting is controlled by

the following:

1. The new RCU_BOOST kernel configuration parameter,
which depends on RT_MUTEXES (default off, at least
initially). This dependency is an implementation con-
straint rather than a policy decision, as in absence of
RT_MUTEXES the priority-boosting scheduler infrastruc-
ture is not compiled into the kernel. Therefore, in ab-
sence of RT_MUTEXES, RCU_BOOST simply cannot do its
job. There is also a dependency on PREEMPT_RCU by de-
sign, given that there is no reason to boost priority for
a non-preemptible RCU implementation. The default
value of RCU_BOOST will be “n” in order to avoid an
automatic Linus rejection. If experience indicates that
enabling RCU_BOOST by default is wise, that change will
be made in a later release of the kernel.

2. The priority that the RCU_SOFTIRQ task runs at, but
only in the -rt patchset, at least until PREEMPT_SOFTIRQS
reaches mainline. In kernels lacking PREEMPT_SOFTIRQS,
the priority instead defaults to the least-important real-
time priority.
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Priority

A -1 -1 Priority A from RCU_SOFTIRQ priority

A -1 C Priority C from rcu_boost_prio

A B -1 Priority B from RCU_BOOST_PRIO

A B C Priority C from rcu_boost_prio

X -1 -1 RT Priority 1 by default

X -1 C Priority C from rcu_boost_prio

X B -1 Priority B from RCU_BOOST_PRIO

X B C Priority C from rcu_boost_prio

Table 1: Relationship of Priority Defaults

3. The new RCU_BOOST_PRIO kernel configuration param-
eter, which depends on RCU_BOOST. This specifies the
default priority to which blocked RCU readers are to
be boosted. A value of zero specifies no boosting.
If the value is -1, then the default is taken from the
RCU_SOFTIRQ priority above. RCU_BOOST_PRIO depends
on RCU_BOOST.

4. The new rcu_boost_prio module parameter in kernel/

rcupdate.c, which also controls the priority to which
blocked RCU readers are to be boosted. A value of
zero specifies no boosting. If the value is -1, then the
default is taken from the RCU_BOOST_PRIO kernel pa-
rameter above. If the value is neither zero nor a valid
real-time scheduler priority, then it is treated as if it
was -1, though a warning will be printed in this case.
This parameter may also be controlled at runtime via
sysfs.

5. The new RCU_BOOST_DELAY kernel parameter, which
specifies the number of jiffies to wait after a given grace
period begins before doing RCU priority boosting for
blocked tasks that are stalling that grace period. A
value of 0 says never to do RCU priority boosting (but
this may be overridden at boot time and at run time).
RCU_BOOST_DELAY depends on RCU_BOOST.

6. A new rcu_boost_delay module parameter in kernel/

rcupdate.c, which also controls the RCU boost de-
lay. A value of -1 says to take the default from the
RCU_BOOST_DELAY kernel parameter, though any other
negative value will have the same effect (but possibly
accompanied by a warning). This parameter may also
be controlled at runtime via sysfs.

The relationship between the RCU_SOFTIRQ priority, the
RCU_BOOST_PRIO kernel parameter, and the rcu_boost_prio
module parameter is involved, so their relationship is shown
by Table 1. A letter A, B, or C in the first column indicates
some real-time priority (which currently ranges from 1 to



99 in the Linux kernel), while the letter X indicates a kernel
without threaded softirqs.2 The “Priority” column indicates
what controls the resulting task priority.

2.2 New Data Structures
Although RCU priority boosting does not introduce any

new data structures to RCU, it does add fields and values to
a number of the existing data structures under RCU_BOOST

ifdef as follows:

1. Add a RCU_READ_UNLOCK_BOOSTED value to those values
that the ->rcu_read_unlock_special task_struct field.

2. Add an rcu_boost_prio global variable to kernel/

rcupdate.c, which is initialized to the RCU_BOOST_

PRIO kernel configuration parameter. This variable is
exported as a module parameter and via sysfs, as
noted in Section 2.1.

3. Add an rcu_boost_prio_old global variable to kernel/

rcupdate.c, which is also initialized to the the RCU_

BOOST_PRIO kernel configuration parameter. This is
used to detect changes to the rcu_boost_prio global
variable.

4. Add an rcu_boost_delay global variable to kernel/

rcupdate.c, which is initialized to the RCU_BOOST_

DELAY kernel configuration parameter. This variable
is exported as a module parameter and via sysfs, as
noted in Section 2.1.

5. A new boost_boost_kthread global variable that con-
tains a pointer to the task_struct structure for a
second-order booster kernel thread. This kernel thread
scans the ->rcu_prio fields, reboosting the correspond-
ing first-order booster kernel threads as needed.

6. Add an rcu_needboost global variable, which is ini-
tialized to zero. This counter signals the second-order
booster kernel thread to wake up.

7. Add an rcu_boostwq global variable, which is initial-
ized using the DECLARE_WAIT_QUEUE_HEAD() macro. This
wait queue is where the second-order booster kernel
thread blocks when there is no boosting to be done.

8. Change the TINY_PREEMPT_RCU type of rcu_preempt_
ctrlblk to be rcu_node to promote common code, and
move the definition from kernel/rcutiny_plugin.h

to kernel/rcutiny.h. A (trivial) definition of rcu_

for_each_leaf_node() will also need to be added to
kernel/rcutiny.h. Note that kernel/rcupdate.c will
need to include one of kernel/rcutiny.h or kernel/

rcutree.h under appropriate ifdef.

The TINY_PREEMPT_RCU implementation additionally needs
the following additional fields in existing data structures,
again under RCU_BOOST ifdef:

2As of this writing, mainline Linux does not permit threaded
softirqs, aside from the non-realtime run_ksoftirqd() task
that is used to handle overflow from the softirq environment.
However, PREEMPT_RT kernels that include the -rt patchset
provide a PREEMPT_SOFTIRQS kernel parameter that causes
softirqs to be executed in the context of a real-time thread
whose priority may be controlled at run time.

1. Add a ->boost_tasks pointer to the rcu_preempt_

ctrlblk structure, which is initialized to NULL. This
field points to the first tasks structure in the ->blkd_

tasks lists that has needs to be boosted but has not
yet been boosted, or NULL if there are no tasks in need
of RCU priority boosting.

2. Add an ->rcu_prio field to the rcu_preempt_ctrlblk
structure, which is initialized to MAX_PRIO-1. This
field records the priority to which tasks should be boosted.
Note that it is possible for this field to have a dif-
ferent value than the rcu_boost_prio global variable.
This situation indicates that the desired boost priority
changed recently, and that all tasks that have already
been boosted need to be boosted again (or deboosted
in the case where the rcu_boost_prio global variable
has changed to a lower priority.

3. Add a ->boosttime field to the rcu_preempt_ctrlblk
structure, which is initialized to jiffies+rcu_boost_

delay. This field records the jiffies value at which
boosting should begin.

4. Add a ->boosted_this_gp field to the rcu_preempt_

ctrlblk, which is initialized to zero both at initializa-
tion and at the beginning of each grace period. This
field tracks whether or not RCU priority boosting has
been initiated during the current grace period.

5. Add a ->boost_kthread field to the rcu_preempt_

ctrlblk structure, which is initalized to NULL. This
field contains a pointer to the booster kernel thread’s
task structure, which is needed to allow the booster
kernel thread’s priority to be boosted.

6. Add a ->needboost field to the rcu_preempt_ctrlblk
structure, which is initialized to zero. This flag signals
the booster kernel thread to wake up.

7. Add a ->boostwq field to the rcu_preempt_ctrlblk

structure, which is initialized using the DECLARE_WAIT_
QUEUE_HEAD() macro. This wait queue is where the
booster kernel thread blocks when there is no boosting
to be done.

8. Add a ->boost_rt_mutex field to the rcu_preempt_

ctrlblk structure, which is an rt_mutex structure used
to carry out the boosting. This field is initialized via
the DEFINE_RT_MUTEX() macro.

The TREE_PREEMPT_RCU implementation additionally needs
the same additional fields that TINY_PREEMPT_RCU does, but
instead in each rcu_node structure (though ->boosttime

and ->boosted_this_gp might instead go into the rcu_

state structure, given the rcu_time_to_boost(), rcu_boosting_
initiated(), and rcu_has_boosted_this_gp() access func-
tions described below). In addition, the ->needboost field
takes on an additional value to tell the corresponding booster
kernel thread to stop.

The rcu_time_to_boost() access function returns non-
zero if the current grace period has extended long enough
that boosting is required. The rcu_boosting_initiated()

access function records the fact that boosting has been initi-
ated. The rcu_has_boosted_this_gp() access function re-
turns non-zero if boosting has already been initiated during
the current grace period.



Figure 2: Limitations of Priority Boosting

In PREEMPT_SOFTIRQS kernels, additional data will be needed
if the RCU_SOFTIRQ tasks are also to be boosted. However,
the initial implementation will assume that the initial prior-
ity chosen for the RCU_SOFTIRQ tasks is sufficient, and will
therefore refrain from boosting them.

Once the SRCU implementation is folded into TREE_PREEMPT_

RCU implementation, an addition field will be needed to link
together the corresponding rcu_node structures for TREE_

PREEMPT_RCU and for the SRCU instances that are subject
to priority boosting. Priority boosting may only be used by
SRCU instances for which SRCU read-side critical sections
only acquire mutexes, but do no other general-blocking op-
eration. In contrast, SRCU instances for which SRCU read-
side critical sections do things like block waiting for network
input cannot use priority boosting. After all, how are you
going to decide what to boost to make the network packet
arrive more quickly? As can be seen in Figure 2, the limita-
tions of priority boosting also affect other scenarios.

2.3 Locking Design
The locking design of RCU priority boosting must respect

RCU’s current locking design, which uses irq-disabled spin-
locks, but must also accommodate the scheduler’s priority-
boosting locking design, which requires that boosting be
undertaken with preemption enabled. The reason that pre-
emption must be enabled while boosting is that disabling
preemption would result in excessive scheduling latencies.
The conflict between these two locking designs is resolved
by the following simplifying constraints:

1. Boost only blocked tasks, so that the lock guarding the
->blkd_tasks list may be used to coordinate boosting
and so that a mutex to be easily used to boost priority.

2. A given booster thread boosts only one blocked thread
at a time, easing implementation of rt_mutex-based.

3. Provide a separate kernel thread to do the boosting.
This thread first modifies the relevant RCU-specific
state with interrupts disabled and under protection of
the appropriate RCU spinlock, then invokes the sched-
uler function that adjusts priorities.

The booster kernel thread does bookkeeping under the
irq-disabled RCU spinlocks, which consists of updating the
->boost_tasks pointer, creating an rt_mutex on the stack,
invoking rt_mutex_init_proxy_locked() on this mutex on
behalf of the task to be boosted, releasing those locks, and

enabling interrupts (thus re-enabling preemption). Only
then does the boster kernel thread invoke the scheduler to
adjust the priority of the task in question as well as any pro-
cesses connected to it via priority-inheritance chains, and
by attempting to acquire the afore-mentioned on-stack rt_

mutex. This approach leverages the pre-existing priority-
inheritance mechanism, thereby boosting not only the task
in question, but any other tasks in its priority-inheritance
chain. The priority-inheritance mechanism already handles
race conditions involving concurrent changes in priority, for
example, via the sched_setscheduler() system call.

2.4 Limitations of RCU Priority Boosting
In addition to the limitations called out in Figure 2, RCU

priority boosting is subject to the following limitations:

1. Real-time processes running at priorities higher than
the current RCU boost priority can still block RCU
grace periods.

2. In PREEMPT_RT kernels, real-time processes running at
priorities higher than the RCU_SOFTIRQ thread can still
block grace periods. (And networking. And disk I/O.
And...)

3. RCU priority boosting can degrade scheduling laten-
cies for real-time processes running at priorities lower
than the current RCU boost priority.

4. Theoreticians will probably choke on the concept of
RCU priority boosting. On the other hand, a good
many theoreticians have already choked on RCU, even
without priority boosting, so why worry?

3. OVERVIEW OF CODE CHANGES
This section gives an overview of the code changes re-

quired, using pseudo-code rather than actual C. Section 3.1
describes the priority booster kernel thread, Section 3.2 de-
scribes the second-order priority booster kernel thread, Sec-
tion 3.3 describes de-boosting, Section 3.4 describes changes
to the core RCU grace-period code, Section 3.5 describes
how the blkd_task lists are merged in TREE_PREEMPT_RCU

when the last CPU for a given rcu_node structure is offlined,
Section 3.7 describes statistics, and Section 3.8 describes the
changes required to the scheduler code.

3.1 Priority Booster Kernel Thread
The priority booster kernel threads cannot be created un-

til the scheduler is up and running, and therefore cannot be
created in rcu_init().3 Instead, these can be started via
kthread_run() from rcu_scheduler_starting(), which cur-
rently enables debug checks that are disabled during early
boot, and disables single-CPU optimizations that operate
only during early boot. This means that the ifdefs cov-
ering the definitions of rcu_scheduler_active and rcu_

scheduler_starting() in TINY_PREEMPT_RCU must now in-
clude RCU_BOOST. The return value from kthread_run()

is a pointer to the task_struct structure, which must be
recorded in the appropriate ->boost_kthread field.

Additional startup/shutdown work is required for TREE_

PREEMPT_RCU:

3I know, because I have tried!



1. Each booster thread must be affinitied to the set of
CPUs associated with the corresponding rcu_node struc-
ture.

2. When the last CPU associated with the correspond-
ing rcu_node structure goes offline, the corresponding
booster thread must be stopped via kthread_stop()

as follows:

(a) Set ->needboost to two to indicate a need to
stop.

(b) Wake up the booster kernel thread.

(c) Invoke kthread_stop().

Note that this process must be carried out after all
blocked tasks have been migrated to the root rcu_node
structure. One way to accomplish this is to place the
new code near the end of the rcu_preempt_offline_

tasks() function.

3. When the first CPU associated with the corresponding
rcu_node structure comes online, the corresponding
booster thread must be created via kthread_start().
The rcu_preempt_init_percpu_data() function is a
good home for this functionality, but only for the CPU-
online case. An explicit check for rcu_scheduler_

active is required to avoid invoking kthread_start()

before the scheduler is ready. The code added to rcu_

preempt_init_percpu_data() should be placed before
the call to rcu_init_percpu_data() so that a simple
test of ->qsmaskinit being equal to zero will deter-
mine whether this is indeed the first CPU coming on-
line.

Once created, the booster kernel thread operates as fol-
lows:

1. Blocks on the combination of ->needboost and ->

boostwq using wait_event() so as to wake up when
->needboost is set to one.

2. If the value of ->needboost is two, invoke kthread_

stop() to terminate execution.

3. Disable interrupts, and, if in TREE_PREEMPT_RCU, ac-
quire the rcu_node structure’s ->lock.

4. Enter an RCU read-side critical section via rcu_read_

lock().

5. Check the ->boost_tasks pointer. If it is NULL, set
->needboost to zero, release the ->lock (if in TREE_

PREEMPT_RCU), re-enable interrupts, and restart from
the beginning. Otherwise, continue.

6. Set local variable p to the value of ->boost_tasks, but
translated back to the task_struct structure.

7. Advance ->boost_tasks to the next element of the
->blkd_tasks list. If there is no next element, instead
set ->boost_tasks to NULL and set ->needboost to
zero.

8. Invoke rt_mutex_init_proxy_locked() on ->boost_

rt_mutex and p.

9. Set the RCU_READ_UNLOCK_BOOSTED bit in the p->rcu_

read_unlock_special bitmask.

10. If in TREE_PREEMPT_RCU, release ->lock and in either
case re-enable interrupts. This has the side-effect of
re-enabling preemption.

11. Exit the RCU read-side critical section via rcu_read_

unlock().

12. Invoke rt_mutex_lock() on ->boost_rt_mutex.

13. Restart from the beginning.

In the TREE_PREEMPT_RCU case in PREEMPT_SOFTIRQS ker-
nels, the booster thread must also control the priority of each
of the RCU_SOFTIRQ tasks associated with CPUs correspond-
ing to that booster thread’s rcu_node structure. However,
the booster thread need not de-boost the PREEMPT_SOFTIRQS
tasks below their original priority.

The code for the booster kernel thread lives in kernel/

rcupdate.c so that it can be shared between TINY_PREEMPT_

RCU and TREE_PREEMPT_RCU.

3.2 Second-Order Priority Booster Kernel Thread
The purpose of the second-order priority booster kernel

thread is to ensure that changes in the desired RCU-boost
priority are dealt with in a timely fashion. To see the
need for this, suppose that some CPU-bound real-time pro-
cesses are preventing the thread that is currently boosted
from running. One reaction to this might be to increase
the RCU-boost priority via the rcu_boost_prio sysfs en-
try. However, the priority booster kernel thread is blocked,
and thus cannot react to this change. The scheduling-clock
interrupt can boost the priority of this thread, but that
won’t help unless the threads that it is blocked on are also
boosted. But there might be a long priority-inheritance
chain of rt_mutex_lock() calls from one thread to the next,
and all the tasks in that chain must be boosted. Although
it is legal to boost a single task from the scheduling clock in-
terrupt handler, it is necessary to have preemption enabled
when boosting a priority-inheritance chain. This priority-
inheritance chain must be boosted by another thread, and
this is the job of the second-order priority booster kernel
thread.

The second-order priority booster kernel thread operates
as follows:

1. Blocks on a combination of the rcu_boostwq global
wait queue and the rcu_needboost global variable, so
that it will awaken when rcu_needboost is non-zero.

2. Set the rcu_needboost global variable to zero and do
smp_mb() to ensure that the checks happen after the
zeroing.

3. For each leaf-level rcu_node structure, do the follow-
ing:

(a) If the ->rcu_prio field is equal to the rcu_boost_
prio global variable, restart from the first step.

(b) Disable interrupts, and in TREE_PREEMPT_RCU, ac-
quire the rcu_node’s ->lock field.

(c) Set the value of the ->rcu_prio field to that of
the rcu_needboost global variable.



(d) If the ->boost_tasks field is non-NULL, set its
value to that of the ->gp_tasks. This forces re-
boosting of any already-boosted tasks.

(e) If in TREE_PREEMPT_RCU, release the rcu_node’s
->lock field, and in either case re-enable inter-
rupts.

(f) Invoke sched_setscheduler_nocheck() on the task
referenced by the ->boost_kthread field, setting
its scheduling policy to SCHED_FIFO and its pri-
ority to ->rcu_prio (via the sched_param struc-
ture).

4. Restart this procedure from the beginning.

Of course, TINY_PREEMPT_RCU has only one rcu_node struc-
ture, and the compiler can be trusted to optimize away the
loop, especially given the definition of rcu_for_each_leaf_
node().

3.3 De-Boosting
The de-boosting process is much simpler than the boost-

ing process described in Section 3.1 because:

1. The task is operating on itself, and therefore need not
enter an RCU read-side critical section.

2. The task is running, and therefore must have an empty
priority-inheritance list. It is therefore unnecessary
for rt_mutex_unlock() to invoke rt_mutex_adjust_

pi(), which in turn makes it unnecessary to ensure
that preemption is enabled.

The de-boosting takes place in rcu_read_unlock_special()

with interrupts enabled and, in the case of TREE_PREEMPT_
RCU, with the rcu_node structure’s ->lock not held.4 The
following very simple procedure therefore suffices:

1. Release the booster kernel thread’s rt_mutex using rt_

mutex_unlock() on ->boost_rt_mutex.

3.4 Core RCU Grace-Period Code
The scheduling-clock interrupt invokes rcu_preempt_check_

callbacks() every jiffy on each CPU that has at least one
RCU callback in flight.5 This function can therefore check
to see if rcu_boost_prio differs from both rcu_boost_prio_

old and -1, and if so, carry out the following procedure:

1. Set the value of rcu_boost_prio_old to -1 using the
xchg() primitive. If the value returned is -1, someone
else is doing this work, so skip the following steps.

2. Invoke rcu_boosting_initiated() to record the boost
attempt.

3. Invoke sched_setscheduler_nocheck() on the task
referenced by the boost_boost_kthread field, setting
its scheduling policy to SCHED_FIFO and its priority to
rcu_boost_prio (via the sched_param structure).

4. Execute an smp_mb() to ensure that the above reads
are executed before the change to rcu_needboost.

4But note that rcu_read_unlock()’s caller might have dis-
abled interrupts, in which case they will obviously still be
disabled.
5If no CPU has an RCU callback in flight, then there is no
reason to do RCU priority boosting.

5. Set the rcu_needboost global variable to 1.

6. Invoke wake_up() on the global rcu_boostwq wait queue.

7. Set the value of rcu_boost_prio_old to that of rcu_
boost_prio using the xchg() primitive. Complain if
the result is not -1.

Note that it is important that the global rcu_boost_prio
be read exactly once. The ACCESS_ONCE() macro can be
used to enforce this, copying the value of rcu_boost_prio
to a local variable.

The rcu_preempt_check_callbacks() must also initiate
RCU priority boosting if the current grace period extends
for too long (it also resets the time, atomically, of course).
It uses a rcu_time_to_boost() function supplied by each of
TINY_PREEMPT_RCU and TREE_PREEMPT_RCU for this purpose.
If this function indicates that it is time to do boosting,

However, grace-period-timeout boosting must interact nicely
with change-in-priority boosting. One way to do this is to
follow the same procedure used above for reacting to a sysfs-
induced change in priority. This means that the condition
for entering the above procedure is as follows:

1. The rcu_time_to_boost() function returns non-zero,
or

2. the rcu_has_boosted_this_gp() function returns non-
zero, and:

(a) rcu_boost_prio is not -1, and

(b) rcu_boost_prio is not equal to rcu_boost_prio_

old.

Of course, this condition is not even checked unless there
is an RCU grace period in progress.

3.5 Merging Task Lists onto the Root RCU-
Node Structure

In the TREE_PREEMPT_RCU implemementation, when the
last CPU corresponding to a given leaf rcu_node structure
goes offline, that structure’s list of blocked tasks must be
merged onto that of the root rcu_node structure. Of course,
if all of the ->gp_tasks, ->exp_tasks, and ->boost_tasks

fields are NULL for both the leaf and root structures, these
lists can be merged in any order, however, if any of these
pointers are non-NULL, care is required.

3.5.1 Canonical Approach
One approach to merging the lists would be to keep track

of the relative order in the list of the tasks referenced by
->gp_tasks, ->exp_tasks, and ->boost_tasks, and then
merge the lists piecewise, taking into account that grace-
period initialization might be in progress, so that the root
and leaf rcu_node structures might be operating on differ-
ent grace periods. However, there are a very large number
of cases to consider, and the resulting code could therefore
be complex and difficult to test thoroughly. Therefore, a
simpler algorithm is desirable.

3.5.2 Helpful Constraints
Fortunately, there are a number of constraints that sim-

plify the task significantly. First, the task referenced by
the ->boost_tasks pointer can never precede that refer-
enced by the ->gp_tasks pointer. Second, if a given ->



gp_tasks pointer is NULL, then the corresponding ->boost_

tasks pointer must also be NULL. Third, if the root and leaf
rcu_node structures are operating on different grace peri-
ods, the ->gp_tasks pointer for the leaf rcu_node structure
must be NULL, because otherwise it would not be legal to be
initializing the rcu_node structures for a new grace period.
Finally, expedited grace periods should be rare and short-
lived, so some sub-optimal handling of normal grace periods
is permissible in that case.

These constraints rely on the following prioritization:

1. Most important: never delay an expedited grace pe-
riod. After all, they are supposed to be expedited.

2. Where possible without undue complexity and without
delaying an expedited grace period, avoid delaying a
normal grace period.

3. Finally, when feasible, avoid redundant boosting of
tasks. This is lowest priority because boosting should
be rare, so the combination of priority boosting and
offlining the last CPU of a given rcu_node structure
should be extremely rare.

3.5.3 Simplified Approach
Given these constraints, a reasonably simple approach is

summarized in Table 2. In all cases, the leaf rcu_node struc-
ture’s list is emptied and its gp_task, ->boost_tasks, and
->exp_tasks pointers are set to NULL. Note that although
the approach outlined in this section can delay normal grace
periods and can cause some tasks to be repeatedly boosted,
this can happen only when CPUs go offline, and even then
only the first time that a given CPU goes offline during a
given grace period. A CPU that goes offline for the second
time during a given grace cannot have tasks blocking the
current grace period.

The first column of Table 2 gives the case number. The
second set of three columns give the initial state of the leaf
rcu_node structure’s three list pointers. A “Y” indicates
that the corresponding pointer is non-NULL, an “X” indi-
cates that the corresponding pointer might or might not be
NULL, and a blank indicates that the corresponding pointer is
NULL. An emboldened letter indicates that the correspond-
ing operation (normal grace period or boosting) is handled
sub-optimally in the corresponding case. The second set of
three columns similarly gives the initial state of the root
rcu_node structure’s three list pointers. The final column
summarizes the list-merging actions, which are covered in
more detail in the following paragraphs.

In case 1, the leaf rcu_node structure’s list has no blocked
tasks that are relevant to the current grace periods, so these
tasks may simply be spliced onto the head of the root rcu_

node structure’s list. Similarly, in case 2, the root rcu_node
structure’s list has no blocked tasks that are relevant to
the current grace periods, so the leaf’s tasks may simply be
spliced onto the tail of the root rcu_node structure’s list. In
addition, in this second case, the root rcu_node structure’s
->gp_tasks, ->boost_tasks, and ->exp_tasks are set to
the corresponding values from the leaf rcu_node structure.

In both of these cases, neither of the grace periods are
required to wait needlessly on tasks, nor are any tasks need-
lessly boosted.

However, in case 3 both rcu_node structure have at least
one task blocking the current expedited grace period, and

the root rcu_node structure might also have tasks block-
ing the current normal grace period, some of which might
also need to be boosted. The list splicing is done in two
steps: First, the head of the leaf rcu_node structure’s list
(up to but not including the first task blocking the current
expedited grace period) is spliced onto the head of the root
rcu_node structure’s list, where it is guaranteed not to re-
sult in unnecessary work. Second, the remainder of the leaf
rcu_node structure’s list is spliced onto the tail of the root
rcu_node structure’s list. This second splicing might cause
the current grace period to wait needlessly on these tasks,
and further might cause these tasks to be needlessly boosted.
This is preferable to delaying the current expedited grace
period, which after all is supposed to be expedited, and is
also preferable to the complexity that would be required for
exact splicing.

Case 4 is spliced in the same manner as for case 3, and in
addition the root rcu_node structure’s ->exp_tasks pointer
is set to the value of the leaf rcu_node structure’s ->exp_

tasks pointer. This again might cause the current normal
grace period to wait unnecessarily on the tasks from the
leaf rcu_node structure, but it is better to delay the normal
grace period than to delay the expedited grace period.

Case 5 is the reverse of case 4, and is handled by splicing
the leaf rcu_node structure’s list to immediately precede
the first task in the root rcu_node structure’s list that is
blocking the current expedited grace period. This has the
same effect as for case 4, but with the roles of the root and
leaf rcu_node structures reversed.

In case 6, both lists have tasks blocking the current normal
grace period, and the root rcu_node structure further has at
least one task blocking the current expedited grace period.
This case is handled by splicing the entire leaf rcu_node

structure’s list to the head of the root rcu_node structure’s
list, then setting the root’s ->gp_tasks pointer to that of
the leaf. In addition, if the leaf’s ->boost_tasks pointer
is non-NULL, then its value is assigned to that of the root.
This of course has the unfortunate side effect of making the
current grace period wait on all of the tasks on the root rcu_
node structure’s list, but we cannot do better given that we
don’t know which of the root ->gp_tasks and ->exp_tasks

pointers comes first in the list. Again, we choose to optimize
for expedited grace periods.

Case 7 has tasks from both lists blocking the normal grace
period, but none blocking the expedited grace period. This
case is handled by splicing the head of the leaf rcu_node

structure’s list, up to but not including the task referenced
by ->gp_tasks, to the head of the root rcu_node structure’s
list. The remainder of the leaf rcu_node structure’s list is
appended to the tail of the root rcu_node structure’s list.
This case avoids excessive waiting by the normal grace pe-
riod, but might redundantly boost some of the tasks from
the leaf rcu_node structure. Since boosting will normally
be quite rare, this is a reasonable tradeoff to make.

Case 8 is the reverse of case 3. Here, the leaf rcu_node
structure’s list is spliced into the root rcu_node structure’s
list to precede the task referenced by the root’s ->exp_tasks
pointer. In addition, the root’s ->gp_tasks, ->boost_tasks,
and ->exp_tasks pointers to the values of the correspond-
ing leaf pointers. This gives the same result as in case 3,
but with the roles of root and leaf reversd.

Case 9 is the reverse of case 6. Here, the leaf rcu_node
structure’s list is spliced onto the tail of the root rcu_node
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List-Merge Action

1 X X X Splice leaf at head of root.

2 X X X Splice leaf at tail of root, set root’s ->gp_tasks, ->boost_
tasks, and ->exp_tasks to those of leaf.

3 Y X X Y Splice leaf’s range from head to ->exp_tasks to the head
of the root’s list. Splice the remainder of leaf’s list to the
tail of root’s list.

4 Y Y X Splice leaf’s range from head to ->exp_tasks to the head
of the root’s list. Splice the remainder of leaf’s list to root’s
tail and update root’s ->exp_tasks to that of leaf.

5 Y X Y Splice leaf’s list immediately precede exp_task in root’s
list. Set root’s ->gp_tasks and ->boost_tasks to those of
the leaf.

6 Y X Y X Y Splice leaf’s list to the head of root’s list. Set root’s ->gp_

tasks to that of the leaf. If the leaf’s ->boost_tasks is
non-NULL, assign it to that of the root.

7 Y X Y X Splice leaf’s range from head to ->gp_tasks to the head of
root’s list. Splice the remainder of leaf’s list to the tail of
root’s list.

8 Y X Y Y Splice leaf’s list to precede the root’s ->exp_tasks. Set
root’s ->gp_tasks, ->boost_tasks, and ->exp_tasks to
those of the leaf.

9 Y X Y Y X Splice the leaf’s list to the tail of the root’s list. Set the
root’s ->exp_tasks to that of the leaf. If the root’s ->

boost_tasks is NULL, set it to that of the leaf.

10 Y X Y Y X Y Splice the leaf’s list to precede root’s ->exp_tasks. Set the
root’s ->exp_tasks to that of the leaf. Set the root’s ->gp_
tasks to the head of the list. If the root’s ->boost_tasks

is NULL, set it to that of the leaf, otherwise if the leaf’s
->boost_tasks is non-NULL set the root’s ->boost_tasks

to the head of the list.

Table 2: Leaf-to-Root List-Merge Cases
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Root Nodes
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Figure 4: Merged List Configuration for Root Nodes

structure’s list, and the root’s ->exp_tasks field is set to
that of the leaf. In addition, if the root’s ->boost_tasks

pointer is NULL, its value is taken from that of the leaf. This
gives the same result as in case 6, but with the roles of the
root and leaf reversed.

Case 10 has tasks in both rcu_node structures blocking
both the normal and the expedited grace periods. Here,
the leaf rcu_node structure’s list is spliced into the root
rcu_node structure’s list to precede the task referenced by
the root’s ->exp_tasks pointer. Set the root’s ->gp_tasks

pointer to the head of the resulting list. If the root’s ->

boost_tasks pointer is NULL, set it to that of the leaf, oth-
erwise if both ->boost_tasks pointers are non-NULL, set the
root’s ->boost_tasks pointer to the head of the resulting
list. This can cause the current normal grace period to wait
unnecessarily for tasks and can result in boosting already-
boosted tasks. Again, however, the expedited grace period
is never unnecessarily delayed.

3.5.4 Yet More Simplified Approach
Although the above approach is simpler and faster than

an optimal merge of the lists, it is still quite complex. This
is inappropriate, especially given that the situation lead-
ing up to it is quite rare: the last of 64 CPUs correspond-
ing to a given rcu_node structure having gone offline. In
addition, the synchronize_rcu_expedited() function can
sometimes fall back to using the slower synchronize_rcu()
function, which makes it hard to justify all the complex-
ity in the approach outlined in Section 3.5.3 just to make
synchronize_rcu_expedited() a bit faster in this rare sit-
uation.

Therefore, this yet-more-simplified approach simply splices
the leaf rcu_node structure’s ->blkd_tasks list at the head
of the root structure’s list. For each of the ->gp_tasks,
->boost_tasks, and ->exp_tasks pointers, if a given leaf
pointer is non-NULL, its value is assigned to the correspond-
ing root pointer. For example, in the situation depicted in
Figure 3, of the leaf structure’s pointers, only ->exp_tasks

pointer is non-NULL while all of the root structure’s pointers
are non-NULL. Therefore, when the leaf’s ->blkd_tasks list
is merged onto that of the root, the resulting ->exp_tasks

pointer is taken from the leaf, while the ->gp_tasks and
->boost_tasks pointers are taken from the root, as shown
in Figure 4.

Pseudo-code for this operation is as follows:

1. (The leaf rcu_node structure’s ->lock field will al-
ready have been acquired by the caller, and interrupts
will have been disabled.)

2. For each element of the leaf’s ->blkd_tasks list:

(a) Obtain a pointer to the task corresponding to the
current list element.

(b) Acquire the root rcu_node structure’s ->lock.

(c) Remove the current element from the leaf’s ->

blkd_tasks list.

(d) Set the task’s ->rcu_blocked_node pointer to ref-
erence the root rcu_node structure.

(e) Add the current element to the head of the root
rcu_node structure’s ->blkd_tasks list.

(f) Release the root rcu_node structure’s ->lock.

3. If the leaf rcu_node structure’s ->gp_tasks pointer is
non-NULL, assign its value to the root’s ->gp_tasks

pointer.

4. If the leaf rcu_node structure’s ->boost_tasks pointer
is non-NULL, assign its value to the root’s ->boost_

tasks pointer.

5. If the leaf rcu_node structure’s ->exp_tasks pointer
is non-NULL, assign its value to the root’s ->exp_tasks
pointer.

6. Set the leaf rcu_node structure’s ->gp_tasks, ->boost_
tasks, and ->exp_tasks pointers all to NULL.

This provides reasonably efficient operation, while reduc-
ing the amount of code in the kernel.

3.6 Boosting Callback Processing
Initial rcutorture tests showed that boosting the tasks

preempted in RCU read-side critical sections is insufficient:
it is also necessary to boost RCU callback invocation. in-
vocation. Otherwise, the grace period might complete (in
TINY_PREEMPT_RCU, but unless the callbacks are invoked, no
memory will actually be freed.

Unfortunately, RCU callbacks are currently invoked within
softirq context, with overflow to ksoftirqd, which cannot be
conveniently boosted. We therefore create separate kthreads
for each CPU that can be readily boosted. The notion of
separate tasks for callback processing is not new, in fact this
concept appeared early in RCU’s Linux implementation [9].
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These are related as shown in Figure 5. The scheduling-
clock interrupt code will cause RCU callback invocation to
run, but does not adjust the priority. Instead, the second-
order boost task is invoked, which boosts any preempted
RCU readers as well as any of the RCU callback invoca-
tion kthreads that have at least one callback blocked by the
current grace period (or any earlier grace period).

3.7 Statistics
Statistics are useful for debugging, performance analysis,

and for evaluating the effectiveness of priority boosting in
given situations. The following statistics need to be gath-
ered:

1. The number of RCU read-side critical sections that
have blocked, collected on a per-rcu_node basis in
TREE_PREEMPT_RCU and globally in TINY_PREEMPT_RCU.

2. The number of RCU read-side critical sections that
have been boosted, also collected on a per-rcu_node
basis in TREE_PREEMPT_RCU and globally in TINY_PREEMPT_

RCU.

3. The number of RCU read-side critical sections that
have unboosted themselves, also collected on a per-
rcu_node basis in TREE_PREEMPT_RCU and globally in
TINY_PREEMPT_RCU.

In TREE_PREEMPT_RCU, these statistics will be output via
a new file in the sysfs rcu directory. In TINY_PREEMPT_RCU,
statistics will be added to a new kernel/rcutiny_trace.c

file, in a manner similar to kernel/rcutree_trace.c. As
with TREE_PREEMPT_RCU, tracing in TINY_PREEMPT_RCU will
be optional in order to keep the memory footprint small.
Unlike TREE_PREEMPT_RCU, when tracing is disabled in TINY_

PREEMPT_RCU, the data will not be collected, again in order
to keep the memory footprint small.

3.8 Changes to Scheduler Code
One of the biggest benefits of the new design worked out

with Peter Zijlstra and Thomas Gleixner is that it does not
require any changes to the scheduler. Woo-hoo!!! ;-)

4. TESTING
Testing will be carried out by the existing rcutorture mod-

ule in the Linux kernel. This module will be modified as
follows:

1. Add a test_boost module parameter, which defaults
to one. A value of one says to test RCU priority boost-
ing only if the specified flavor of RCU supports this
notion, while a value of two says to test RCU priority
boosting even if the specified flavor of RCU does not
support this notion. This latter is useful for testing
the test.

2. Add a can_boost flag to the rcu_torture_ops struc-
ture.

3. If the values of test_boost and can_boost indicate
that boosting should be tested, a high-priority real-
time task is spawned, one per CPU. These tasks pe-
riodically run in unison, periodically registering call-
backs and checking for their completion. The time that
each thread should wait is controlled by the new rcu_

boost_delay_jiffies() function – if a given grace pe-
riod does not complete in twice that value plus (say)
ten jiffies, the thread complains that RCU priority
boosting is not working.

In addition, early versions of the patches will be made
available on LKML, with the hope that people who have
experienced OOM issues will try it out and report results.

5. IMPLEMENTATION
This work will be implemented in the following stages:

1. Negotiate an appropriate interface to the scheduler.
This task has been started, and thus far has resulted
in the improved design noted in Section 3.8. However,
additional adjustments are likely to be required.

2. Implement the rcutorture changes, verifying that it is
possible to reliably preempt low-priority RCU readers.

3. Fix some performance bugs in TINY_PREEMPT_RCU’s rcu_
preempt_check_callbacks() function, test, and sub-
mit the patch.

4. Implement RCU priority boosting in TINY_PREEMPT_

RCU, including tracing, test and submit patch along
with the rcutorture patch.

5. Move TREE_PREEMPT_RCU to a single blocked-tasks list,
in order to allow common code to boost both imple-
mentations. Test and submit the patch.

6. Implement RCU priority boosting in TREE_PREEMPT_

RCU, including tracing, test and submit the patch.

7. Fixes and issues located during the review process.

8. Update Documentation/RCU/ in-tree documentation to
note new kernel configuration parameters, rcutorture
options, and stall-warning resolutions.

9. Produce community documentation, for example, an
LWN article. This should preferably be combined with
that for TINY_PREEMPT_RCU and TREE_PREEMPT_RCU, pos-
sibly as a series.



6. CONCLUSIONS
Although many common real-time programming method-

ologies avoid long-term stalling of low-priority RCU readers,
for example, by mandating strict limits on CPU utilization,
there are other methodologies that use CPU-bound real-
time processes. In addition, even given strict limits on CPU
utilization, it can be very helpful if bugs that violate these
limits do not hang the system.

Therefore, RCU priority boosting can be helpful to a wide
range of real-time programming methodologies, especially
for small-memory machines that cannot ride out overlong
RCU grace periods. This RCU priority-boosting design is
a great improvement over earlier attempts [7] in that no
changes to the scheduler are required, in the common case,
only those tasks blocking the current grace period are boosted,
and the algorithm and data structures are much simpler.
These improvements are largely due to improvements in the
design and implementation of preemptible RCU, as previous
implementations were notoriously complex [6].
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