
Priority Boosting Preemptible RCU

Paul E. McKenney
Linux Technology Center

IBM Beaverton
paulmck@linux.vnet.ibm.com

paul.mckenney@linaro.org

ABSTRACT
Read-copy update (RCU) is a light-weight synchronization
mechanism that has been used in production for well over a
decade, most recently, as part of the Linux kernel. The key
concept behind RCU is the ability of RCU update-side prim-
itives (synchronize_rcu() and call_rcu()) to wait on pre-
existing RCU read-side critical sections, which are delimited
by rcu_read_lock() and rcu_read_unlock(). The time re-
quired for all pre-existing RCU read-side critical sections to
complete is termed an RCU grace period. A common usage
pattern is to remove an element from a data structure, wait
for an RCU grace period to elapse, then free that element.

Older implementations of RCU operated by suppressing
preemption across the RCU read-side critical sections, but
more recent implementations designed for real-time use per-
mit such preemption. This can lead to a priority-inversion
problem, where a low-priority non-real-time task is preempted
within an RCU read-side critical section by several medium-
priority real-time tasks (at least one per CPU). This situa-
tion prevents any subsequent RCU grace periods from com-
pleting, which prevents the corresponding memory from be-
ing freed, which can exhaust memory, which can block a
high-priority real-time task that is attempting to allocate
memory.

This situation is similar to lock-based priority inversion,
and, as with lock-based priority inversion, and can be solved
by temporarily boosting the priority of the low-priority task
that was blocked in an RCU read-side critical section.

1. INTRODUCTION
RCU is a synchronization mechanism that allows exe-

cution to be deferred until all potentially conflicting op-
erations have completed, which greatly simplifies the de-
sign and implementation of concurrent algorithms [5]. Al-
though RCU antecedents date back to 1980 [4], RCU at-
tained widespread use only after its acceptance into the
Linux kernel in 2002, where it has since become quite heav-
ily used, as shown in Figure 1. RCU’s popularity stems
from its solution to the “existence problem” [2]. The po-
tentially conflicting operations, termed RCU read-side criti-

cal sections, are bracketed with rcu_read_lock() and rcu_

read_unlock() primitives. Production-quality implemen-
tations of these primitives scale linearly, are wait-free, are
immune to both deadlock and livelock, and incur extremely
low overheads. In fact, in server-class (CONFIG PREEMPT=n)
Linux-kernel builds, these two primitives incur exactly zero

overhead [3].1

Any statement that is not within an RCU read-side crit-
ical section is a quiescent state, and a quiescent state that
persists for a significant time period is called an extended

quiescent state. Any time period during which each thread
has occupied at least one quiescent state is a grace period.
The synchronize_rcu() primitive waits for a grace period
to elapse. Updates that cannot block may use an asyn-
chronous primitive named call_rcu(), which causes a spec-
ified function to be invoked with a specified argument at
the end of a subsequent grace period. In some (but not
all) production-quality implementations, call_rcu() sim-
ply appends a callback to a per-thread list, and is therefore
wait-free [1, 8]. Nevertheless, RCU updates do incur some
overhead, so that RCU is best-suited for read-mostly situa-
tions.

Taken together, these four primitives implement RCU’s
grace-period guarantee: a given grace period is guaranteed
to extend past the end of any pre-existing RCU read-side
critical section [9]. It is important to note that RCU pro-
vides this guarantee regardless of the memory model of the
underlying computer system.

On weakly ordered systems (a category including all com-
modity microprocessors), RCU also provides a publish-sub-
scribe guarantee via the rcu_assign_pointer() publication
and rcu_dereference() subscription primitives. These prim-
itives disable any compiler and CPU optimizations that might
otherwise result in an RCU reader seeing a pre-initialized
view of a newly published data structure. Both of these
primitives have O(1) computational complexity with small
constant, and incur zero overhead on sequentially consistent
computer systems, where “system” includes the compiler.

Although older implementations of RCU relied on dis-
abling preemption across all RCU read-side critical sections,
more recent implementations have permitted these critical
sections to be preempted in order to improve real-time schedul-
ing latency [3, 6, 7]. As noted earlier, such preemption
opens the door to a priority-inversion situation where a low-
priority task is preempted in an RCU read-side critical sec-
tion by medium-priority real-time tasks, preventing any sub-
sequent RCU grace periods from ever completing. If grace
periods never complete, the corresponding memory is never
freed, eventually running the system out of memory. The
resulting hang can be expected to block even the highest-
priority real-time tasks.

@@@ Roadmap

1Sequent’s DYNIX/ptx operating system also provided
zero-overhead RCU read-side primitives [8].

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2
00

2

 2
00

3

 2
00

4

 2
00

5

 2
00

6

 2
00

7

 2
00

8

 2
00

9

 2
01

0

 2
01

1

R

C
U

 A
P

I U
se

s

Year

2.5

2.6

Figure 1: RCU API Usage in the Linux Kernel

2. CONTROL OF BOOSTING
The operation of RCU priority boosting is controlled by

the following:

1. The new BOOST_RCU kernel configuration parameter,
which depends on RT_MUTEXES (default off, at least
initially). This dependency is an implementation con-
straint rather than a policy decision, as in absence of
RT_MUTEXES the priority-boosting scheduler infrastruc-
ture is not compiled into the kernel. Therefore, in ab-
sence of RT_MUTEXES, BOOST_RCU simply cannot do its
job. There is also a dependency on PREEMPT_RCU by de-
sign, given that there is no reason to boost priority for
a non-preemptible RCU implementation. The default
value of BOOST_RCU will be “n” in order to avoid an
automatic Linus rejection. If experience indicates that
enabling BOOST_RCU by default is wise, that change will
be made in a later release of the kernel.

2. The priority that the RCU_SOFTIRQ task runs at, but
only in the -rt patchset, at least until PREEMPT_SOFTIRQS
reaches mainline. In kernels lacking PREEMPT_SOFTIRQS,
the priority instead defaults to the least-important real-
time priority.

3. The new BOOST_RCU_PRIO kernel configuration param-
eter, which depends on BOOST_RCU. This specifies the
default priority to which blocked RCU readers are to
be boosted. A value of zero specifies no boosting.
If the value is -1, then the default is taken from the
RCU_SOFTIRQ priority above. BOOST_RCU_PRIO depends
on BOOST_RCU.

4. The new rcu_boost_prio module parameter in kernel/

rcupdate.c, which also controls the priority to which

R
C
U
_
S
O
F
T
I
R
Q

P
ri

o
ri

ty

R
C
U
_
B
O
O
S
T
_
P
R
I
O

K
e
rn

e
l
P
a
ra

m
e
te

r

r
c
u
_
b
o
o
s
t
_
p
r
i
o

M
o
d
u
le

P
a
ra

m
e
te

r

Priority

A -1 -1 Priority A from RCU_SOFTIRQ priority

A -1 C Priority C from rcu_boost_prio

A B -1 Priority B from RCU_BOOST_PRIO

A B C Priority C from rcu_boost_prio

X -1 -1 RT Priority 1 by default

X -1 C Priority C from rcu_boost_prio

X B -1 Priority B from RCU_BOOST_PRIO

X B C Priority C from rcu_boost_prio

Table 1: Relationship of Priority Defaults

blocked RCU readers are to be boosted. A value of
zero specifies no boosting. If the value is -1, then the
default is taken from the BOOST_RCU_PRIO kernel pa-
rameter above. If the value is neither zero nor a valid
real-time scheduler priority, then it is treated as if it
was -1, though a warning will be printed in this case.
This parameter may also be controlled at runtime via
sysfs.

5. The new BOOST_RCU_DELAY kernel parameter, which
specifies the number of jiffies to wait after a given grace
period begins before doing RCU priority boosting for
blocked tasks that are stalling that grace period. A
value of -1 says never to do RCU priority boosting
(but this may be overridden at boot time and at run
time). BOOST_RCU_DELAY depends on BOOST_RCU.

6. A new rcu_boost_delay module parameter in kernel/

rcupdate.c, which also controls the RCU boost de-
lay. A value of -1 says to take the default from the
BOOST_RCU_DELAY kernel parameter, though any other
negative value will have the same effect (but possibly
accompanied by a warning). This parameter may also
be controlled at runtime via sysfs.

The relationship between the RCU_SOFTIRQ priority, the
RCU_BOOST_PRIO kernel parameter, and the rcu_boost_prio
module parameter is involved, so their relationship is shown
by Table 1. A letter A, B, or C in the first column indicates
some real-time priority (which currently ranges from 1 to
99 in the Linux kernel), while the letter X indicates a kernel
without threaded softirqs.2 The “Priority” column indicates
what controls the resulting task priority.

2As of this writing, mainline Linux does not permit threaded
softirqs, aside from the non-realtime run_ksoftirqd() task
that is used to handle overflow from the softirq environment.
However, PREEMPT_RT kernels that include the -rt patchset
provide a PREEMPT_SOFTIRQS kernel parameter that causes
softirqs to be executed in the context of a real-time thread
whose priority may be controlled at run time.

3. NEW DATA STRUCTURES
Although RCU priority boosting does not introduce any

new data structures to RCU, it does add fields and values to
a number of the existing data structures under BOOST_RCU

ifdef as follows:

1. Add a RCU_READ_UNLOCK_BOOSTED value to those values
that the ->rcu_read_unlock_special task_struct field.

2. Add an rcu_boost_prio global variable to kernel/

rcupdate.c, which is initialized to the BOOST_RCU_

PRIO kernel configuration parameter. This variable is
exported as a module parameter and via sysfs, as
noted in Section 2.

3. Add an rcu_boost_prio_old global variable to kernel/

rcupdate.c, which is also initialized to the the BOOST_

RCU_PRIO kernel configuration parameter. This is used
to detect changes to the rcu_boost_prio global vari-
able.

4. Add an rcu_boost_delay global variable to kernel/

rcupdate.c, which is initialized to the BOOST_RCU_

DELAY kernel configuration parameter. This variable
is exported as a module parameter and via sysfs, as
noted in Section 2.

5. A new boost_boost_kthread global variable that con-
tains a pointer to the task_struct structure for a
second-order booster kernel thread. This kernel thread
scans the ->rcu_prio fields, reboosting the correspond-
ing first-order booster kernel threads as needed.

6. Add an rcu_needboost global variable, which is ini-
tialized to zero. This counter signals the second-order
booster kernel thread to wake up.

7. Add an rcu_boostwq global variable, which is initial-
ized using the DECLARE_WAIT_QUEUE_HEAD() macro. This
wait queue is where the second-order booster kernel
thread blocks when there is no boosting to be done.

8. Change the TINY_PREEMPT_RCU type of rcu_preempt_
ctrlblk to be rcu_node to promote common code, and
move the definition from kernel/rcutiny_plugin.h

to kernel/rcutiny.h. A (trivial) definition of rcu_

for_each_leaf_node() will also need to be added to
kernel/rcutiny.h. Note that kernel/rcupdate.c will
need to include one of kernel/rcutiny.h or kernel/

rcutree.h under appropriate ifdef.

The TINY_PREEMPT_RCU implementation additionally needs
the following additional fields in existing data structures,
again under BOOST_RCU ifdef:

1. Add a ->boost_tasks pointer to the rcu_preempt_

ctrlblk structure, which is initialized to NULL. This
field points to the first tasks structure in the blkd_

tasks lists that has needs to be boosted but has not
yet been boosted, or NULL if there are no tasks in need
of RCU priority boosting.

2. Add an ->rcu_prio field to the rcu_preempt_ctrlblk
structure, which is initialized to MAX_PRIO-1. This
field records the priority to which tasks should be boosted.

Note that it is possible for this field to have a dif-
ferent value than the rcu_boost_prio global variable.
This situation indicates that the desired boost priority
changed recently, and that all tasks that have already
been boosted need to be boosted again (or deboosted
in the case where the rcu_boost_prio global variable
has changed to a lower priority.

3. Add a ->boosttime field to the rcu_preempt_ctrlblk
structure, which is initialized to jiffies+rcu_boost_

delay. This field records the jiffies value at which
boosting should begin.

4. Add a ->boost_kthread field to the rcu_preempt_

ctrlblk structure, which is initalized to NULL. This
field contains a pointer to the booster kernel thread’s
task structure, which is needed to allow the booster
kernel thread’s priority to be boosted.

5. Add a ->needboost field to the rcu_preempt_ctrlblk
structure, which is initialized to zero. This flag signals
the booster kernel thread to wake up.

6. Add a ->boostwq field to the rcu_preempt_ctrlblk

structure, which is initialized using the DECLARE_WAIT_
QUEUE_HEAD() macro. This wait queue is where the
booster kernel thread blocks when there is no boosting
to be done.

7. Add a ->boost_rt_mutex field to the rcu_preempt_

ctrlblk structure, which is an rt_mutex structure used
to carry out the boosting. This field is initialized via
the DEFINE_RT_MUTEX() macro.

The TREE_PREEMPT_RCU implementation additionally needs
the same additional fields that TINY_PREEMPT_RCU does, but
instead in each rcu_node structure (though ->boosttime

might instead go into the rcu_state structure, given the
rcu_time_to_boost() access function). In addition, the
->needboost field takes on an additional value to tell the
corresponding booster kernel thread to stop.

In PREEMPT_SOFTIRQS kernels, additional data will be needed
if the RCU_SOFTIRQ tasks are also to be boosted. However,
the initial implementation will assume that the initial prior-
ity chosen for the RCU_SOFTIRQ tasks is sufficient, and will
therefore refrain from boosting them.

Once the SRCU implementation is folded into TREE_PREEMPT_

RCU implementation, an addition field will be needed to link
together the corresponding rcu_node structures for TREE_

PREEMPT_RCU and for the SRCU instances that are subject
to priority boosting.3

4. LOCKING DESIGN
(Thanks to Peter Zijlstra, Thomas Gleixner, and Darren

Hart for reviewing my previous design and suggesting the
following greatly improved design, which among other things

3At that point, SRCU instances for which SRCU read-
side critical sections only acquire mutexes, but do no other
general-blocking operation, can use priority boosting. In
contrast, SRCU instances for which SRCU read-side criti-
cal sections do things like block waiting for network input
cannot use priority boosting. After all, how are you going
to decide what to boost to make the network packet arrive
more quickly?

has the nice side effect of not requiring any new fields in the
task structure.)

The locking design of RCU priority boosting must respect
RCU’s current locking design, which uses irq-disabled spin-
locks, but must also accommodate the scheduler’s priority-
boosting locking design, which requires that boosting be
undertaken with preemption enabled. The reason that pre-
emption must be enabled while boosting is that disabling
preemption would result in excessive scheduling latencies.
The conflict between these two locking designs is resolved
by the following simplifying constraints:

1. Boost only blocked tasks, so that the lock guarding the
blkd_tasks list may be used to coordinate boosting
and so that a mutex to be easily used to boost priority.

2. A given booster thread boosts only one blocked thread
at a time, easing implementation of rt_mutex-based.

3. Provide a separate kernel thread to do the boosting.
This thread first modifies the relevant RCU-specific
state with interrupts disabled and under protection of
the appropriate RCU spinlock, then invokes the sched-
uler function that adjusts priorities.

The booster kernel thread does bookkeeping under the
irq-disabled RCU spinlocks, which consists of updating the
boost_tasks pointer, creating an rt_mutex on the stack,
invoking rt_mutex_init_proxy_locked() on this mutex on
behalf of the task to be boosted, releasing those locks, and
enabling interrupts (thus re-enabling preemption). Only
then does the boster kernel thread invoke the scheduler to
adjust the priority of the task in question as well as any pro-
cesses connected to it via priority-inheritance chains, and
by attempting to acquire the afore-mentioned on-stack rt_

mutex. This approach leverages the pre-existing priority-
inheritance mechanism, thereby boosting not only the task
in question, but any other tasks in its priority-inheritance
chain. The priority-inheritance mechanism already handles
race conditions involving concurrent changes in priority, for
example, via the sched_setscheduler() system call.

5. OVERVIEW OF CODE CHANGES
@@@ roadmap @@@

5.1 Priority Booster Kernel Thread
The priority booster kernel threads cannot be created un-

til the scheduler is up and running, and therefore cannot be
created in rcu_init().4 Instead, these can be started via
kthread_run() from rcu_scheduler_starting(), which cur-
rently enables debug checks that are disabled during early
boot, and disables single-CPU optimizations that operate
only during early boot. This means that the ifdefs cov-
ering the definitions of rcu_scheduler_active and rcu_

scheduler_starting() in TINY_PREEMPT_RCU must now in-
clude RCU_BOOST. The return value from kthread_run()

is a pointer to the task_struct structure, which must be
recorded in the appropriate ->boost_kthread field.

Additional startup/shutdown work is required for TREE_

PREEMPT_RCU:

1. Each booster thread must be affinitied to the set of
CPUs associated with the corresponding rcu_node struc-
ture.

4I know, because I have tried!

2. When the last CPU associated with the correspond-
ing rcu_node structure goes offline, the corresponding
booster thread must be stopped via kthread_stop()

as follows:

(a) Set ->needboost to two to indicate a need to
stop.

(b) Wake up the booster kernel thread.

(c) Invoke kthread_stop().

Note that this process must be carried out after all
blocked tasks have been migrated to the root rcu_node
structure. One way to accomplish this is to place the
new code near the end of the rcu_preempt_offline_

tasks() function.

3. When the first CPU associated with the corresponding
rcu_node structure comes online, the corresponding
booster thread must be created via kthread_start().
The rcu_preempt_init_percpu_data() function is a
good home for this functionality, but only for the CPU-
online case. An explicit check for rcu_scheduler_

active is required to avoid invoking kthread_start()

before the scheduler is ready. The code added to rcu_

preempt_init_percpu_data() should be placed before
the call to rcu_init_percpu_data() so that a simple
test of ->qsmaskinit being equal to zero will deter-
mine whether this is indeed the first CPU coming on-
line.

Once created, the booster kernel thread operates as fol-
lows:

1. Blocks on the combination of ->needboost and ->

boostwq using wait_event() so as to wake up when
->needboost is set to one.

2. If the value of ->needboost is two, invoke kthread_

stop() to terminate execution.

3. Disable interrupts, and, if in TREE_PREEMPT_RCU, ac-
quire the rcu_node structure’s ->lock.

4. Enter an RCU read-side critical section via rcu_read_

lock().

5. Check the ->boost_tasks pointer. If it is NULL, set
->needboost to zero, release the ->lock (if in TREE_

PREEMPT_RCU), re-enable interrupts, and restart from
the beginning. Otherwise, continue.

6. Set local variable p to the value of ->boost_tasks, but
translated back to the task_struct structure.

7. Advance ->boost_tasks to the next element of the
->blkd_tasks list. If there is no next element, instead
set ->boost_tasks to NULL and set ->needboost to
zero.

8. Invoke rt_mutex_init_proxy_locked() on ->boost_

rt_mutex and p.

9. Set the RCU_READ_UNLOCK_BOOSTED bit in the p->rcu_

read_unlock_special bitmask.

10. If in TREE_PREEMPT_RCU, release ->lock and in either
case re-enable interrupts. This has the side-effect of
re-enabling preemption.

11. Exit the RCU read-side critical section via rcu_read_

unlock().

12. Invoke rt_mutex_lock() on ->boost_rt_mutex.

13. Restart from the beginning.

In the TREE_PREEMPT_RCU case in PREEMPT_SOFTIRQS ker-
nels, the booster thread must also control the priority of each
of the RCU_SOFTIRQ tasks associated with CPUs correspond-
ing to that booster thread’s rcu_node structure. However,
the booster thread need not de-boost the PREEMPT_SOFTIRQS
tasks below their original priority.

The code for the booster kernel thread lives in kernel/

rcupdate.c so that it can be shared between TINY_PREEMPT_

RCU and TREE_PREEMPT_RCU.

5.2 Second-Order Priority Booster Kernel Thread
The purpose of the second-order priority booster kernel

thread is to ensure that changes in the desired RCU-boost
priority are dealt with in a timely fashion. To see the
need for this, suppose that some CPU-bound real-time pro-
cesses are preventing the thread that is currently boosted
from running. One reaction to this might be to increase
the RCU-boost priority via the rcu_boost_prio sysfs en-
try. However, the priority booster kernel thread is blocked,
and thus cannot react to this change. The scheduling-clock
interrupt can boost the priority of this thread, but that
won’t help unless the threads that it is blocked on are also
boosted. But there might be a long priority-inheritance
chain of rt_mutex_lock() calls from one thread to the next,
and all the tasks in that chain must be boosted. Although
it is legal to boost a single task from the scheduling clock in-
terrupt handler, it is necessary to have preemption enabled
when boosting a priority-inheritance chain. This priority-
inheritance chain must be boosted by another thread, and
this is the job of the second-order priority booster kernel
thread.

The second-order priority booster kernel thread operates
as follows:

1. Blocks on a combination of the rcu_boostwq global
wait queue and the rcu_needboost global variable, so
that it will awaken when rcu_needboost is non-zero.

2. Set the rcu_needboost global variable to zero and do
smp_mb() to ensure that the checks happen after the
zeroing.

3. For each leaf-level rcu_node structure, do the follow-
ing:

(a) If the ->rcu_prio field is equal to the rcu_boost_
prio global variable, restart from the first step.

(b) Disable interrupts, and in TREE_PREEMPT_RCU, ac-
quire the rcu_node’s ->lock field.

(c) Set the value of the ->rcu_prio field to that of
the rcu_needboost global variable.

(d) If the ->boost_tasks field is non-NULL, set its
value to that of the ->gp_tasks. This forces re-
boosting of any already-boosted tasks.

(e) If in TREE_PREEMPT_RCU, release the rcu_node’s
->lock field, and in either case re-enable inter-
rupts.

(f) Invoke sched_setscheduler_nocheck() on the task
referenced by the ->boost_kthread field, setting
its scheduling policy to SCHED_FIFO and its pri-
ority to ->rcu_prio (via the sched_param struc-
ture).

4. Restart this procedure from the beginning.

Of course, TINY_PREEMPT_RCU has only one rcu_node struc-
ture, and the compiler can be trusted to optimize away the
loop, especially given the definition of rcu_for_each_leaf_
node().

5.3 De-Boosting
The de-boosting process is much simpler than the boost-

ing process described in Section 5.1 because:

1. The task is operating on itself, and therefore need not
enter an RCU read-side critical section.

2. The task is running, and therefore must have an empty
priority-inheritance list. It is therefore unnecessary
for rt_mutex_unlock() to invoke rt_mutex_adjust_

pi(), which in turn makes it unnecessary to ensure
that preemption is enabled.

The de-boosting takes place in rcu_read_unlock_special()

with interrupts enabled and, in the case of TREE_PREEMPT_
RCU, with the rcu_node structure’s ->lock not held.5 The
following very simple procedure therefore suffices:

1. Release the booster kernel thread’s rt_mutex using rt_

mutex_unlock() on ->boost_rt_mutex.

5.4 Core RCU Grace-Period Code
The scheduling-clock interrupt invokes rcu_preempt_check_

callbacks() every jiffy on each CPU that has at least one
RCU callback in flight.6 This function can therefore check
to see if rcu_boost_prio differs from both rcu_boost_prio_

old and -1, and if so, carry out the following procedure:

1. Set the value of rcu_boost_prio_old to -1 using the
xchg() primitive. If the value returned is -1, someone
else is doing this work, so skip the following steps.

2. Invoke sched_setscheduler_nocheck() on the task
referenced by the boost_boost_kthread field, setting
its scheduling policy to SCHED_FIFO and its priority to
rcu_boost_prio (via the sched_param structure).

3. Execute an smp_mb() to ensure that the above reads
are executed before the change to rcu_needboost.

4. Set the rcu_needboost global variable to 1.

5. Invoke wake_up() on the global rcu_boostwq wait queue.

6. Set the value of rcu_boost_prio_old to that of rcu_
boost_prio using the xchg() primitive. Complain if
the result is not -1.

5But note that rcu_read_unlock()’s caller might have dis-
abled interrupts, in which case they will obviously still be
disabled.
6If no CPU has an RCU callback in flight, then there is no
reason to do RCU priority boosting.

Note that it is important that the global rcu_boost_prio
be read exactly once. The ACCESS_ONCE() macro can be
used to enforce this, copying the value of rcu_boost_prio
to a local variable.

The rcu_preempt_check_callbacks() must also initiate
RCU priority boosting if the current grace period extends
for too long (it also resets the time, atomically, of course).
It uses a rcu_time_to_boost() function supplied by each of
TINY_PREEMPT_RCU and TREE_PREEMPT_RCU for this purpose.
If this function indicates that it is time to do boosting,

@@@ also must handle reboosting on priority change.
This must synchronize with reboosting based on timeout –
can’t reboost twice concurrently. Timeout can defer to pri-
ority change, though. Need a flag that indicates that boost-
ing has already happened at least once for this grace period,
and only then should a priority change induce a reboost.
Then can use the rcu_boost_prio_old field to interlock.
@@@

5.5 Statistics
Statistics are useful for debugging, performance analysis,

and for evaluating the effectiveness of priority boosting in
given situations. The following statistics need to be gath-
ered:

1. The number of RCU read-side critical sections that
have blocked, collected on a per-rcu_node basis in
TREE_PREEMPT_RCU and globally in TINY_PREEMPT_RCU.

2. The number of RCU read-side critical sections that
have been boosted, also collected on a per-rcu_node
basis in TREE_PREEMPT_RCU and globally in TINY_PREEMPT_

RCU.

3. The number of RCU read-side critical sections that
have unboosted themselves, also collected on a per-
rcu_node basis in TREE_PREEMPT_RCU and globally in
TINY_PREEMPT_RCU.

In TREE_PREEMPT_RCU, these statistics will be output via
a new file in the sysfs rcu directory. In TINY_PREEMPT_RCU,
statistics will be added to a new kernel/rcutiny_trace.c

file, in a manner similar to kernel/rcutree_trace.c. As
with TREE_PREEMPT_RCU, tracing in TINY_PREEMPT_RCU will
be optional in order to keep the memory footprint small.
Unlike TREE_PREEMPT_RCU, when tracing is disabled in TINY_

PREEMPT_RCU, the data will not be collected, again in order
to keep the memory footprint small.

5.6 Changes to Scheduler Code
TBD rcu_adjust_prio() and changes to rt_mutex_getprio().

6. TESTING
Testing will be carried out by the existing rcutorture mod-

ule in the Linux kernel. This module will be modified as
follows:

1. Add a test_boost module parameter, which defaults
to one. A value of one says to test RCU priority boost-
ing only if the specified flavor of RCU supports this
notion, while a value of two says to test RCU priority
boosting even if the specified flavor of RCU does not
support this notion. This latter is useful for testing
the test.

2. Add a can_boost flag to the rcu_torture_ops struc-
ture.

3. If the values of test_boost and can_boost indicate
that boosting should be tested, a high-priority real-
time task is spawned, one per CPU. These tasks pe-
riodically run in unison, periodically registering call-
backs and checking for their completion. The time that
each thread should wait is controlled by the new rcu_

boost_delay_jiffies() function – if a given grace pe-
riod does not complete in twice that value plus (say)
ten jiffies, the thread complains that RCU priority
boosting is not working.

@@@

7. CONCLUSIONS
@@@

Legal Statement
This work represents the views of the author and does not necessarily

represent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be trademarks or

service marks of others.

8. REFERENCES
[1] Desnoyers, M., McKenney, P. E., Stern, A.,

Dagenais, M. R., and Walpole, J. User-level
implementations of read-copy update. Submitted to
IEEE TPDS, December 2009.

[2] Gamsa, B., Krieger, O., Appavoo, J., and Stumm,

M. Tornado: Maximizing locality and concurrency in a
shared memory multiprocessor operating system. In
Proceedings of the 3rd Symposium on Operating System

Design and Implementation (New Orleans, LA,
February 1999), pp. 87–100. Available:
http://www.usenix.org/events/osdi99/full_

papers/gamsa/gamsa.pdf [Viewed August 30, 2006].

[3] Guniguntala, D., McKenney, P. E., Triplett, J.,

and Walpole, J. The read-copy-update mechanism
for supporting real-time applications on shared-memory
multiprocessor systems with Linux. IBM Systems

Journal 47, 2 (May 2008), 221–236. Available:
http://www.research.ibm.com/journal/sj/472/

guniguntala.pdf [Viewed April 24, 2008].

[4] Kung, H. T., and Lehman, Q. Concurrent
maintenance of binary search trees. ACM Transactions

on Database Systems 5, 3 (September 1980), 354–382.
Available: http://portal.acm.org/citation.cfm?id=

320619&dl=GUIDE, [Viewed December 3, 2007].

[5] Massalin, H. Synthesis: An Efficient Implementation

of Fundamental Operating System Services. PhD thesis,
Columbia University, New York, NY, 1992.

[6] McKenney, P. E., and Sarma, D. Towards hard
realtime response from the Linux kernel on SMP
hardware. In linux.conf.au 2005 (Canberra, Australia,
April 2005). Available: http://www.rdrop.com/users/

paulmck/RCU/realtimeRCU.2005.04.23a.pdf [Viewed
May 13, 2005].

[7] McKenney, P. E., Sarma, D., Molnar, I., and

Bhattacharya, S. Extending RCU for realtime and
embedded workloads. In Ottawa Linux Symposium

(July 2006), pp. v2 123–138. Available:
http://www.linuxsymposium.org/2006/view_

abstract.php?content_key=184 http://www.rdrop.

com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf

[Viewed January 1, 2007].

[8] McKenney, P. E., and Slingwine, J. D. Read-copy
update: Using execution history to solve concurrency
problems. In Parallel and Distributed Computing and

Systems (Las Vegas, NV, October 1998), pp. 509–518.
Available: http://www.rdrop.com/users/paulmck/

RCU/rclockpdcsproof.pdf [Viewed December 3, 2007].

[9] McKenney, P. E., and Walpole, J. What is RCU,
fundamentally? Available:
http://lwn.net/Articles/262464/ [Viewed December
27, 2007], December 2007.

