RTOS - EMBEDDED SECURITY W

Next-generation hard real-time
on POSIX-based Linux

by Robert Schwebel, Pengutronix

The POSIX standards make a
good choice for building
long-term solutions

for industrial applications.
They offer a framework
which has already proved
itself over more than

twenty years. With the
recently added pre-emption
patch, Linux is fully able

to provide a hard real-time
POSIX runtime environment.

m Industrial applications often need hard guar-
antees for system response times. Whereas op-
erating systems on a standard PC usually try to
be fair when giving out CPU time to the
processes running on a machine, control appli-
cations cannot accept that, for example, an ac-
cidently running visualisation process may
defer the execution of a high priority motion
controller task for an undefined time span. Lit-
erature often differentiates between: hard real-
time, soft real-time and no real-time operating
systems. Historically, hard real-time (HRT) ap-
plications have often been developed with spe-
cialised hardware (microcontrollers, signal
processors), being dedicated to one single task.
On the other hand, commercial off-the-shelf
PC hardware was never the best hardware
platform for HRT applications: neither the old-
fashioned interrupt architecture of the x86
processors nor the bus architecture made them
the first choice for hardware developers.

However, there are three arguments driving de-
velopers into using standard PC hardware for
industrial applications: 1) PC hardware is inex-
pensive, compared to customised industrial
components; 2) the commercial power behind
the x86 architecture is extraordinary and leads
to a massive performance growth for modern
PC processors; 3) HRT applications have an
ever-increasing demand for communication to
the outside world, and the PC is the platform

with the most communication possibilities.

Over the last ten years it has become more and
more evident throughout the industry that
Linux would be a first-class player in the oper-
ating system market. Due to its open nature,
Linux quickly became one of the best-support-
ed systems, being commercially supported by
most major I'T and server companies. So it was
no big surprise that, during the second half of
the nineties, industrial users also noticed that
Linux could be an enterprise-class operating
system for control and automation applica-
tions. But as it was aimed at server and desktop
scenarios, the Linux mainstream developers
never came up with the aim to support HRT re-
quirements. Nevertheless, there have been sev-
eral pioneer projects which brought HRT sce-
narios to the open-source operating system.

Hard real-time solutions for Linux first came
up during the end of the nineties, when Victor
Yodaiken, a New Mexico Institute of Technol-
ogy professor, and Paolo Mantegazza, professor
at Politechnico di Milano, published their RT-
Linux and RTAI patches to the Linux kernel.
Both solutions were based on a “dual kernel”
approach: the idea was to run a small HRT ker-
nel with complete control over the interrupts
“below” a standard Linux, so that the Linux ker-
nel would get CPU resources only if there were
no other high-priority tasks on the schedule.

15

The dual kernel approach worked in several in-
dustrial real-life projects, so it quickly became
the standard solution for developers who want-
ed to combine the communication skills of
Linux with HRT requirements. The author was
part of the RTAI development team for some
years and successfully finished several industry
projects based on RTAI.

Starting sometime around 2002, it became
more and more obvious to several industrial
RTAI developers, that the inner software struc-
ture, the maintenance model and the dual ker-
nel approach in general would not be able to
solve tomorrows, hard real-time problems.
The software structure would probably have
been a solvable task, taken that the core of RTAI
— dating back to the DOS era — would have
been rewritten from scratch. But the mainte-
nance model couldn’t easily be solved: the
mainline Linux developers have often stated
that no dual kernel approach would be accept-
ed to be part of the “official” Linux kernel. The
consequence was that the automation develop-
ers would have the long-term burden to let the
RTAI kernel follow the rapidly moving Linux
target. Linux is developing quicker than ever:
since the 2.6.15 kernel was released at the begin-
ning of 2006, more than 4000 patches have
been integrated into the 2.6.16 kernel and that
pace would have to be followed by the real-time
folks.

July 2006

€ce



m RTOS - EMBEDDED SECURITY

LER ) ™ W )

Latency plot; x-axis: delay in ys;
y-axis: histogram/number of events

Following an operating system which is devel-
oping at this high rate is each project manager’s
nightmare and an often-heard argument
against using recent kernels in industrial proj-
ects. In reality things work differently: the peo-
ple who actually develop a hard real-time exten-
sion must follow the latest kernel development,
because the more they stay behind the top-of
tree-activities the more they have to care about
long solved problems and cannot participate in
the high bug-fixing and feature improvement
rate of the Linux kernel. Taking a project-cen-
tric view there always is the point where the ker-
nel has to be frozen, but the usual strategy in an
open-source-based industrial project is to do
that due to project reasons, not because of some
random decisions of real-time kernel extension
developers. Due to the fact that the Linux ker-
nel has several 100,000 testers worldwide, the
latest kernel usually is the best one.

Another argument became more important in
recent times: the investment goods industry
builds machines with an estimated life span of
15 to 20 years, and the software part of the de-
velopment cost is constantly increasing. Taking
the fact that this software part also has to be
maintained and supported for these 15 to 20
years, there is a high demand for finding a soft-
ware framework able to survive that time
span. Whereas probably nobody can imagine
professionally supporting software technology
from the eighties today (remember, that was the
C64 and IBM-XT era), we now have software
infrastructure that is able to provide a solid base
for future development.

Since 1986, the POSIX (portable operating sys-
tem interface for Unix, DIN/EN/ISO/IEC
9945/IEEE1003.x) standard provides a solid
base for all kinds of industrial strength prob-
lems which happen to exist in today’s embed-
ded software. The standard describes the inter-
face between the operating system and the ap-
plication software. It is actively maintained by
The Open Group, the latest revision is the 2004
edition of the IEEE1003.x standard series. All
maintenance effort aims at fixing problems

July 2006

with the standard, without breaking compati-
bility. For timing-critical applications, POSIX
has everything one might expect: a thread
model with locking, timers with nanosecond
resolution and mechanisms for asynchronous
notification. As the POSIX standards have
already survived 20 years of software innova-
tion, it looks like a good base for industrial
applications. And, by the way, the Linux kernel
aims at being POSIX-compliant.

In 2005, Linux kernel developers Ingo Molnar
and Thomas Gleixner revealed two advances to
the kernel community: the “real-time pre-
emption” and the “high resolution timer”
patches. The idea behind their work is simple.
Why should we add a dual kernel approach
below the kernel when we can fix the reasons
why Linux was not HRT up to now? If that ap-
proach worked, we had a Linux kernel which
could run all kinds of “normal” userspace
POSIX code under hard real-time conditions.

From the API point-of-view, Linux has all nec-
essary interfaces. The problem is that the imple-
mentations behind the APIs add several restric-
tions to what the APIs provide: for example,
POSIX timers have historically always been
limited by the internal scheduler resolution of
10ms. So even if the programmer wrote a
POSIX program and set up a timer with a pe-
riod of 500ps, running at the highest POSIX
real-time priority 99, that timer would proba-
bly have expired after 10ms — or even much
later, if the system has other important things
to do. So the task was to analyse the reasons for
the restrictions of the Linux kernel, which is
currently an ongoing task worked on by the
core developers, supported by the rest of the
Linux community.

In the meantime, the real-time preemption
patch has made quite some progress. On the
technical side, a recent RT-preempt patched
Linux kernel has several advantages over a
“vanilla” kernel: first it is fully preemptable.
There are no long-lasting locks any more, so if
the scheduler decides that a high priority
POSIX task is to be run, the task switch happens
without longer scheduling latencies. Because
locks in scheduled operating systems always
have the “priority inversion” problem (a high
priority task may wait for a lock being held by
a low priority task), Molnar and Gleixner devel-
oped priority inversion (PI) support for the in-
kernel locking mechanisms, and, down that
road, cleaned up the whole kernel locking infra-
structure. Finally it came out that the timer
infrastructure of the Linux kernel was optimized
for timeouts, not for timers. Timeouts are usu-
ally optimized not to expire (think of a hard disc
block read, where a timeout should almost never
happen), whereas timers are optimized to ex-
pire. Because the overwhelming majority of

16

timers in the Linux kernel have been used for
timeouts, it was necessary to completely rewrite
the timing infrastructure and separate out
timers from timeouts. A side effect is that, after
that cleanup, there is much better support for
highly specialised timers which are for example
found on common system-on-chip CPUs.

As of today, major parts of Molnar’s and
Gleixner’s work have already made it into the
mainline kernel, others will probably follow
when the remaining issues the kernel commu-
nity might have are resolved. These activities
clearly show why the kernel development is so
successful in the first place: in contrast to what
the RTAI, RT-Linux and other communites
have done in former years, this time the devel-
opers analysed the real reasons for design
weaknesses and fixed their origins.

In December 2005, a group led by some large-
scale machine building companies, seconded by
hardware manufacturers and Linux technolo-
gy companies formed the Open Source Au-
tomation Development Lab, OSADL. One of
the aims of OSADL is to support the real-time
preemption activities and to offer an infrastruc-
ture which can provide first-class support and
test infrastructure for the automation industry,
so that users from the industry can certify their
hardware and software products against com-
munity-proven standard systems. m

€ce



