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1.0 Abstract 
 

In any IT environment, it is a rather challenging task to accurately identify and resolve IO systems 
performance problems. Especially, when the systems support a wide range of workload patterns and the 
actual performance issues only surface under certain workload conditions.  
 

This paper presents a novel taxonomy that characterizes in a structured and pragmatic manner the 
interrelationships and tradeoffs of the (rather complex) Linux 2.6 IO stack. The focus is on elaborating on the 
tools and techniques available in Linux 2.6 to analyze, quantify, and optimize workload-dependent IO 
performance. The argument made is that only a detailed, layered analysis of the Linux 2.6 application, file 
system, block IO layer, IO scheduler, and device driver IO chain allows optimizing the application workload 
onto the logical and physical IO resources. Further, the study proposes a new algorithm for the Linux 2.6 
default IO scheduler CFQ. The algorithm is based on Hopfield Artificial Neural Networks (ANN) and 
addresses some of the potential queue and starvation issues found in the current CFQ implementation. 
 
2.0 Introduction 
 

The argument made throughout the study is that quantifying and optimizing the Linux 2.6 IO 
performance is a function of the actual IO path, the devices in the code path, as well as the workload 
presented to them (the actual workload driver). This study was initiated to discuss and document a rather 
simple, efficient, and effective methodology to quantify Linux 2.6 IO performance. Compared to other UNIX 
operating systems, Linux 2.6 rather deviates from an IO design perspective and provides the user 
community with a more layered IO stack. To illustrate, in Linux 2.6, the IO scheduler, as well as the read-
ahead mechanism is an actual artifact of the OS, whereas in traditional UNIX systems, these components 
are incorporated into the filesystem framework. In this study, Section 3 elaborates on the current Linux 2.6 
IO stack. Section 4 introduces the IO schedulers and discusses their respective performance behavior. 
Section 5 discusses the proposed IO evaluation and quantification methodology, and elaborates on the 
available Linux tools to quantify IO performance from the application layer down into the actual IO hardware. 
Section 6 introduces a new algorithm that focuses on optimizing the aggregate IO throughput behavior of the 
CFQ scheduler, and presents actual benchmark results utilizing the optimized IO scheduler. The study 
concludes in Section 7 by summarizing the accomplishments and discussing some future work items. 
 
3.0 Linux 2.6 IO Framework 
 

The I/O scheduler in Linux forms the interface between the generic block layer and the low-level 
device drivers. The block layer provides functions that are utilized by the file systems and the virtual memory 
manager to submit I/O requests to block layer (see Figure 1). These requests are transformed by the I/O 
scheduler and made available to the low-level device drivers. The device drivers consume the transformed 
requests and forward them (by using device specific protocols) to the actual device controllers that perform 
the I/O operations. As prioritized resource management seeks to regulate the use of a disk subsystem by an 
application, the I/O scheduler is considered an imperative kernel component in the Linux I/O path. It is 
further possible to regulate the disk usage in the kernel layers above and below the I/O scheduler. Adjusting 
the I/O pattern generated by the file system or the virtual memory manager (VMM) is considered as an 
option. Another option is to adjust the way specific device drivers or device controllers consume and 
manipulate the I/O requests.  

 
The various Linux 2.6 I/O schedulers can be abstracted into a rather generic I/O model (Figure 1). 

The I/O requests are generated by the block layer on behalf of threads that are accessing various file 
systems, threads that are performing raw I/O, or are generated by virtual memory management (VMM) 
components of the kernel such as the kswapd or the pdflush threads. The producers of I/O requests initiate 
a call to __make_request(), which invokes various I/O scheduler functions such as elevator_merge_fn(). The 
enqueue functions in the I/O framework intend to merge the newly submitted block I/O unit (a bio) with 
previously submitted requests, and to sort (or sometimes just insert) the request into one or more internal 



I/O queues. As a unit, the internal queues form a single logical queue that is associated with each block 
device [8]. At a later stage, the low-level device driver calls the generic kernel function elv_next_request() to 
obtain the next request from the logical queue. The elv_next_request() call interacts with the I/O scheduler’s 
dequeue function elevator_next_req_fn(), and the latter has an opportunity to select the appropriate request 
from one of the internal queues. The device driver processes the request by converting the I/O submission 
into scatter-gather lists and protocol-specific commands that are submitted to the device controller [2]. From 
an I/O scheduler perspective, the block layer is considered as the producer of I/O requests and the device 
drivers are labeled as the actual consumers.  
 
Figure 1: Linux 2.6 I/O Stack 
 

 
 
From a generic IO perspective, every read() or write() request launched by an application results in 

either utilizing the respective I/O system calls, or in memory mapping (mmap) the file into a process’s 
address space. I/O operations normally result in allocating PAGE_SIZE units of physical memory [4]. These 
pages are being indexed, as this enables the system to later on locate the page in the buffer cache. A cache 
subsystem though only improves performance if the data in the cache is being reused. Further, the read 
cache abstraction allows the system to implement read-ahead functionalities, as well as to construct large 
contiguous (SCSI or Fibre Channel) I/O commands that can be served via a single direct memory access 
(DMA) operation. In circumstances where the cache represents pure (memory bus) overhead, I/O features 
such as direct I/O should be explored (especially in situations where the system is CPU bound). In a general 
write() scenario, the system is not necessarily concerned with the previous content of a file, as a write() 
operation normally results in overwriting the contents in the first place. Therefore, the write cache 
emphasizes other aspects such as asynchronous updates, as well as the possibility of omitting some write 
requests in the case where multiple write() operations into the cache subsystem result in a single I/O 
operation to a physical IO component [9]. Such a scenario may occur in an environment where updates to 
the same (or a similar) inode offset are being processed within a rather short time-span. The representation 
of the block I/O layer in Linux 2.6 encourages large I/O operations. The block I/O layer tracks data buffers by 
using struct page pointers [2]. Linux 2.6 utilizes logical pages attached to inodes to flush dirty data, which 
allows multiple pages that belong to the same inode to be coalesced into a single bio that can be submitted 
to the I/O layer.  
 
4.0 Linux 2.6 IO Schedulers 
 
 The next few paragraphs discuss the 4 IO schedulers available in the Linux 2.6 IO framework. 
Each IO scheduler has a different performance behavior, and hence, the internal working of each scheduler 
has to be known when designing and implementing Linux server systems. In this section, the focus is on the 
Linux 2.6 default IO scheduler CFQ. The noop, the anticipatory, and the deadline IO scheduler are 
discussed in this paper in a less comprehensive manner. Please see Appendix A for a detailed discussion of 
the Linux 3.x IO Scheduler framework (updated 2013).  
 



4.1 CFQ IO Scheduler 
 

The CFQ scheduler operates by placing synchronous requests that are submitted by threads into a 
number of per-thread queues, and then by allocating actual time-slices for each of the queues to access the 
(physical) IO subsystem. The length of the time-slice, as well as the number of IO requests that a queue is 
allowed to submit depends on the IO priority of the given thread. Asynchronous IO requests for all threads 
are bundled together (priority based) in a few queues. By design, good aggregate throughput behavior is 
achieved by allowing a thread queue to idle at the end of a synchronous IO batch, thereby allowing the IO 
framework to anticipate (short-term) close IO requests from the same thread (similar to the deadline IO 
scheduler discussed below). This behavior is considered a natural extension of granting actual IO time slices 
to a thread [8]. 
 

The designers behind the CFQ scheduler created the concept of having actual IO queues for each 
thread. These queues are created ad-hoc for each particular thread. Further, the designers segregated the 
concept of IO into two distinct sections, synchronous and asynchronous IO. Synchronous IO is important as 
the application threads have to stall until the IO request completes. To illustrate, if an application read() 
request does not hit in either the cache or the memory subsystem, the application read() request has to 
block until the data is available in memory, a scenario that obviously has a profound impact on application 
performance. In most circumstances, write() requests are asynchronous. Ergo, the write() requests are 
pushed into the memory subsystem, if possible consolidated, and flushed to disk either time-based, or 
based on the state of the memory subsystem.  
 

Next to distinguishing between synchronous (which are favored) and asynchronous IO operations, 
the CFQ design also prefers read over write operations [3]. As already discussed in this paper, read 
requests have the potential to stall application processing, impacting aggregate systems performance. 
Further, read requests, based on the elevator approach, may starve other read requests that disclose (from 
an IO geometry perspective) long-distance cases (based on the currently processed IO batch). Therefore, 
favoring read over write operations (in some circumstances) may improve aggregate read IO 
responsiveness, and reduce the probability of read IO starvation. This problem is further addressed in this 
paper in Section 6. Based on the dynamic nature of IO operations (and the corresponding priority scenarios) 
though, there is always a possibility that an IO request gets pushed back in a queue, and hence gets 
delayed. To combat such a behavior, in CFQ, each thread is associated with a time-out value. If the IO 
thread is not executed within that epoch, as the time expires, the IO thread is instantly scheduled for 
execution.  
 
 As with all Linux 2.6 IO schedulers, the designers of the CFQ IO scheduler exported several tuning 
parameters into user space. In other words, the actual performance behavior of the CFQ scheduler, based 
on the application workload and the setup of the physical IO subsystem, can be adjusted/modified by the 
user community [8]. 
 
4.2 The noop IO Scheduler 
 

The noop scheduler inserts the set of I/O requests into a simple, unordered FIFO queue and only 
provides simple IO request merging. The noop scheduler is very effective in environments where IO 
performance optimization is incorporated in a lower layer of the (physical) IO stack. In other words, the noop 
scheduler is normally chosen in cluster environments that have SAN access [9]. Further, the noop scheduler 
is best used with solid state disks (SSD) or any other device that can not benefit from re-ordering of multiple 
I/O requests at the Linux IO scheduler level.  
 
4.3 The Anticipatory IO Scheduler 
 

The anticipatory (AS) I/O scheduler’s design attempts to reduce the per thread read response time. 
It introduces a controlled delay component into the dispatching equation. The delay is being invoked on any 
new read() request to the device driver, thereby allowing a thread that just finished its read() I/O request to 
submit a new read() request, basically enhancing the chances (based on locality) that this scheduling 
behavior will result in smaller seek operations. The tradeoff between reduced seeks and decreased disk 
utilization (due to the additional delay factor in dispatching a request) is managed by utilizing an actual cost-
benefit analysis. More specifically, the Linux 2.6 implementation of the anticipatory I/O scheduler follows the 
basic idea that if the disk drive just operated on a read() request, the assumption can be made that there is 
another read() request in the pipeline, and hence it is worth the while to wait [5].  

 



This concept basically addresses the deceptive idleness performance problem that may occur in 
other IO schedulers. Hence, the anticipatory I/O scheduler starts a timer, and at this point, there are no more 
I/O requests passed down to the device driver. If a (close) read() request arrives during the wait time, it is 
serviced immediately and in the process, the actual distance that the kernel considers as close grows as 
time passes (the adaptive part of the heuristic). Eventually the close requests will dry out and the scheduler 
will decide to submit some of the write() requests. Despite the fact that up until Linux 2.6.18, the anticipatory 
IO scheduler used to be the default scheduler for most of the Linux distributions, it is rarely being used today 
(some Web server systems may be the exception). Benchmarks have shown that the anticipatory IO 
scheduler may actually have a rather detrimental impact on IO performance with TCQ disk IO components 
or HW RAID systems, respectively.  
 
4.4 The Deadline IO Scheduler 
 

The deadline I/O scheduler incorporates a per-request expiration-based approach and operates on 
5 I/O queues. The basic idea behind the implementation is to aggressively reorder requests to improve I/O 
performance while simultaneously ensuring that no I/O request is being starved [1]. More specifically, the 
scheduler introduces the notion of a per-request deadline, which is used to assign a higher preference to 
read() than write() requests. The scheduler maintains the 5 I/O queues. During the enqueue phase, each I/O 
request gets associated with a deadline, and is being inserted in I/O queues that are either organized by the 
starting logical block number (a sorted list) or by the deadline factor (a FIFO list). The scheduler incorporates 
separate sort and FIFO lists for read() and write() requests, respectively. The 5

th
 I/O queue contains the 

requests that are to be handed off to the device driver. During a dequeue operation, in the case where the 
dispatch queue is empty, requests are moved from one of the 4 (sort or FIFO) I/O lists in batches.  

 
The next step consists of passing the head request on the dispatch queue to the device driver (this 

scenario also holds true in the case that the dispatch-queue is not empty). The logic behind moving the I/O 
requests from either the sort or the FIFO lists is based on the scheduler’s goal to ensure that each read() 
request is processed by its effective deadline, without starving the queued-up write() requests. In this 
design, the goal of economizing the disk seek time is accomplished by moving a larger batch of requests 
from the sort list (logical block number sorted), and balancing it with a controlled number of requests from 
the FIFO list. Hence, the ramification is that the deadline I/O scheduler effectively emphasizes average 
read() request response time over disk utilization and total average I/O request response time. Benchmarks 
have shown that some database applications do perform well with the deadline IO scheduler.  
 
5.0 Methodology to Evaluate & Quantify IO Performance 
 
Figure 2: Linux 2.6 strace example 
 

 
While quantifying systems IO performance, it is paramount to understand the workload distribution 

at the application layer first. The application is the actual workload driver, and its usage mix of read(), write(), 
mmap(), fstat(), or lseek() systems calls governs the IO throughput potential of any IO subsystem. An 
application can be data intensive, metadata intensive, operate in a mostly sequential or random IO 
framework, utilize small or large IO requests, or may be more read() or write() intensive. Tracing the actual 
application (in user space) allows determining the workload behavior, and establishing the IO workload 
profiles. The workload profiles, 1

st
 explain the code path that the application is taking through the IO OS 



stack, allowing for exact and precise tuning of the logical resources in the IO path. Establishing the IO path 
through the OS allows for precise systems tuning activities that are based on empirical data, verses the so 
common brute-force or folklore tuning approach (such as cut-and-paste out of a whitepaper) that is 
unfortunately so widespread in the IT community. 2

nd
, the workload profiles can be used as input in an IO 

benchmark (such as FFSB) to further quantify application IO performance under increased workload 
conditions (scalability analysis). In a Linux environment, the strace tool is being used to trace applications in 
user space [9]. No changes to the application code are required to trace the systems calls. The following 
strace example (Figure 2) highlights the potential of the Linux tool. In the above strace example, each line is 
time-stamped (down to the microsecond level). Hence, for each IO system call, the actual response time at 
the application level can be determined. Further, the IO request sizes are visible as arguments in the system 
calls. Therefore, for any individual IO call, the performance behavior at the application layer can be 
determined. A statistical analysis of the trace data allows determining if the application is read or write 
intensive, data or metadata intensive, or performs mainly sequential or random IO operations. Further, over 
the length of the trace, the total amount of data read or written, as well as the number of IO operations can 
be quantified.  

 
What is not visible in the application trace however is how these IO requests are being processed 

through the Linux IO stack down to the device driver (see Figure 1). The well-known (and well-documented) 
UNIX/Linux performance command iostat provides IO statistics (aggregated per device) at the device driver 
level. The iostat tool, while still very much useful in any IO performance evaluation study, does not provide 
any detailed performance data on a per IO request basis. Therefore, whatever happens on a per IO basis (in 
regards to IO wait, IO request coalescing, or IO request reordering scenarios) between the application layer 
and the device driver is hidden or black boxed.  Fortunately, Linux 2.6 provides the blktrace tool set that 
allows scrutinizing the IO requests at the block layer and scheduler level [6]. The blktrace tool set basically  
provides detailed block layer information on an individual IO request level. The (kernel) implementation is 
considered low overhead (from a systems perspective), as benchmarks have shown only an approximately 
2% aggregate performance degradation under rather stressful IO scenarios. Multiple logical or physical IO 
devices can be specified, and even filters can be used to zoom into the area of interest. To further analyze a 
blktrace output, the blkparse and btt tools can be used. Figure 3 depict the summary of a blktrace session. 
 
Figure 3: Linux 2.6 blktrace summary 

 
 



 To reiterate, blktrace infrastructure enables the Linux community to analyze scalability issues within 
the block I/O layer, as well as to quantify the potential overhead (performance cost) induced by a (as an 
example) software RAID solution. Further, the efficiency of various IO hardware configurations can be 
quantified. The tool set is also being used to determine the best possible IO scheduler configuration for a 
certain environment/workload, as the tool set highlights the application IO behavior/cost at the Linux bio to 
IO scheduler interface. Further, the tool set has been used to benchmark the (application specific) IO 
performance in conjunction with different Linux file system solutions. As every Linux file system (such as 
ext4, JFS, XFS, or Btrfs) has a different communication behavior with the Linux bio layer (see Figure 1), the 
tool set reflects a very powerful mechanism to determine the most efficient and effective file system setup for 
a particular application and HW environment. Next to the blkparse command, the btt tool aids in further 
analyzing the IO behavior [7]. The btt output discusses (in a very detailed manner) the IO events in the Linux 
2.6 bio layer (see Figure 4). Further, the btt command allows displaying the IO behavior (on a time line) in a 
graphical form.  
 
Figure 4: Linux 2.6 btt summary 

 
As depicted in Figure 4, btt generates IO data, indicating ranges where threads and devices are 

actively handling various IO events such as block I/O entered, I/O inserted/merged, I/O issued, or I/O 
completed [7]. To reiterate, the Linux 2.6 blktrace tool set fills the gap between the application space and the 
actual device driver when analyzing IO performance. The tool set is being used to optimize the application 
driven IO demand onto the file system, the IO scheduler, and ultimately onto the HW IO subsystem. Next to 
identifying bottlenecks and addressing scalability issues in the Linux 2.6 IO kernel framework, the tool set 
supports choosing the file system, as well as the IO scheduler that is most suited for a certain environment. 
 

Figure 5 depicts a btt output on a time-line. In this example, the blktrace output was further refined 
via btt on a system that showed the following behavior. Some IO tasks disclosed a large lag time between 
being inserted into the bio and IO scheduler framework and actually being submitted to the device driver. 
During this time, the system was in the process of creating file systems on single devices. Figure 5 shows 
the time line for the Linux pdflush daemon and the mkfs command. The graph reveals a steady stream of IO 
requests for the mkfs command (at the device layer), whereas for the pdflush daemon, a time lag of 



approximately 14.5 seconds exists. For the pdflush daemon, at the data point 19 seconds, the last batch of 
IO requests enters the Linux IO bio layer, but are not completed until the data point 33.5 (see Figure 5). The 
analysis of the system showed that the server was setup/configured with the anticipatory IO scheduler, 
allowing the mkfs command to proceed while holding back the pdflush’s IO requests. Switching the IO 
scheduler to noop resulted in a much more balanced IO behavior between the mkfs and the pdflush IO 
requests.  
 
Figure 5: Linux btt output on a time-line (mkfs vs. pdflush IO behavior) 

 
 
6.0 CFQ IO Scheduler Optimization 
 

As already discussed in Section 4.1, in the CFQ IO scheduler framework, some IO requests may 
experience rather long wait times in the scheduler queue. While CFQ provides timeout values for 
synchronous and asynchronous IO tasks, the default values of 125 milliseconds and 250 milliseconds, 
respectively, are in IO terms rather long. Hence, depending on the IO workload mix, some IO requests may 
experience starvation inside the CFQ IO scheduler, affecting aggregate application response time. Further, 
the CFQ quantum parameter (default value is 4) governs the number of dispatched IO requests to the 
device queue. Most of the CFQ tunables are associated with an IO priority value. In this section, an Artificial 
Neural Network (ANN) based algorithm is proposed that addresses the current CFQ starvation issues by 
optimizing the per queue quantum value. To illustrate, while a queue is selected for processing, the quantum 
is changed utilizing an ANN algorithm.  

 
The ANN recognizes trend information of time series data by analyzing the IO behavior against 

previous states [11]. The input values into the ANN are the quantum of the queues (now dynamic), as well 
as the average response time values. An actual relationship between the quantum change of a specified 
queue with the average response time and the quantum of other queues is established. Ergo, the ANN 
determines the quantum of a specified queue by using the optimized quantum behavior of other queues in 
the system. To illustrate, the proposed algorithm determines the current optimal quantum value in relation to 
the average response time by optimizing the average response time of the queue. The learning phase of the 
ANN revolves around the response time values per queue. For a particular queue, if the new (calculated) 
average response time is less than the last calculated response time, the new value is chosen. If the new 
average response time is greater than the last value, the last value is kept as the optimized value, and the 
calculated quantum is selected for the queue. If the quantum of another queue changes (workload 
dependent), a (potentially) new quantum may have to be established. From an implementation perspective, 
a Hopfield network was chosen [10]. A Hopfield network is considered as iterative auto-associative memory. 
John Hopfield (a physicist) introduced a simple (in structure), but very effective artificial neural network. A 
Hopfield network is normally used for auto-association problems (vector based). A Hopfield network reflects 
a single layer network with a number of neurons equal to the number of inputs Xi. The network is fully 
connected, which implies that every neuron is connected to every other neuron, and hence all the inputs are 



also the outputs (feedback based). Feedback is one of the key features of the Hopfield network, and this 
feedback is the basis for the convergence to the correct result. The learning algorithm for a Hopfield network 
is based on the Hebbian rule, and is basically a summation of products. The Hebbian Learning Rule is a 
learning rule that specifies how much the weight of the connection between two units should be increased or 
decreased in proportion to the product of their activation. However, since the Hopfield network has a number 
of input neurons, the weights are no longer a single array or vector, but a collection of vectors, which are 
most compactly contained in a single matrix [10].  
 

To assess and quantify the performance potential of the proposed extension to the CFQ IO scheduler, a 
set of IO benchmarks were executed against a RAID setup consisting of 8 Seagate drives. For all the 
benchmarks, XFS file systems were used. The changes to the CFQ IO scheduler were incorporated into a 
Linux 2.6.30 kernel. For the Linux RAID benchmarks, a RAID-10 setup (with 8 disks) was configured. The 
hardware setup for all the conducted benchmarks can be summarized as: 
 

 2 Dual-Core Xeon Processors (2.5GHz) 

 16GB RAM (to avoid excessive caching scenarios, only 4GB were used for the benchmarks) 

 Areca ARC-1220 SATA PCI-express 8x controller with 8 Seagate 7,200RPM 500GB SATA II drives 
 

All the empirical studied were executed by utilizing the Flexible File System Benchmark (FFSB) IO 
benchmarking set. FFSB represents a sophisticated benchmarking environment that allows analyzing 
performance by simulating basically any IO pattern imaginable. The benchmarks can be executed on 
multiple individual file systems, utilizing an adjustable number of worker threads, where each thread may 
either operate out of a combined or a thread-based IO profile. Aging the file systems, as well as collecting 
systems utilization and throughput statistics is part of the benchmarking framework. For the RAID setup (8 
concurrent IO threads), the following benchmarks were conducted: 
 

 Sequential Read, 40MB files, 4KB read requests 

 Sequential Write, 100MB files, 4KB write requests 

 Random Read, 40MB files, 4KB read requests, 1MB random read per IO thread 

 Random Write, 40MB files, 4KB write requests, 1 MB random write per IO thread 

 Mixed, 60% read, 30% write, 10% delete, file sizes 4KB to 1MB, 4KB requests 
 
 Each benchmark was executed 15 times, and the results reflect the mean values over the sample 
set. For all the conducted benchmarks, the coefficient of variation (CV) was less than 4%, hence the 
statement can be made that all the runs are reproducible with the resources at hand. For all the 
benchmarks, an efficiency value, representing the number of IO operations divided by the CPU utilization 
was calculated. In other words, the efficiency value fuses the throughput potential and the corresponding 
CPU demand/consumption. To simulate a heterogeneous IO environment, the priority of the IO threads was 
chosen based on a pseudo random number generator.  
 
Figure 6: Mixed Worklaod – Throughput  
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 The results of the conducted FFSB benchmarks disclosed a very encouraging throughput behavior. 
For the sequential IO benchmarks, the ANN based CFQ IO scheduler improved the throughput by 
approximately 3%. For the random IO benchmarks, the throughput was improved by approximately 1%. The 
largest throughput improvement was reported for the mixed workload pattern with approximately 4% (see 
Figure 6). For none of the benchmarks conducted for this study, any performance degradation with the ANN 
CFQ scheduler was reported. Having said that, for all the conducted benchmarks, the CPU utilization with 
the ANN based CFQ scheduler increased and hence, the CFQ ANN results report a lower efficiency value. 
For the sequential IO benchmarks, the efficiency value for the ANN CFQ setup is approximately 8.5% lower, 
whereas for the random IO benchmarks, the efficiency value for the ANN CFQ setup dropped by 
approximately 7%. For the mixed workload benchmark, the ANN CFQ value was lower than the current CFQ 
setup by approximately 7.5% (see Figure 7).  
 
Figure 7: Mixed Workload – Efficiency Value 
 

 
 Table 1 summarizes the results of the conducted benchmarks. The increase in CPU utilization is 
due to the ANN processing tasks to determine the optimal quantum per queue in relation to the average 
response time. A more CPU efficient implementation of the Hopfield network (code optimization) should 
result in better CPU utilization values. Actual blktrace data taken throughout the benchmark study revealed 
for the CFQ ANN scheduler an improved (more balanced) IO processing behavior, resulting into a more 
optimized average response time per queue. Ergo, at least for the benchmarks conducted for this study, the 
proposed ANN algorithm addresses the IO starvation issues discussed in this paper.  
 
Table 1: Summary of the conducted FFSB benchmarks 
 

Sequential Writes (8 threads) TP MB/sec Efficiency (Ops/%CPU) 

CFQ 216.6 1,600 

CFQ-ANN 223.098 1,472 

Sequential Reads (8 threads) TP MB/sec Efficiency (Ops/%CPU) 

CFQ 257.1 15,500 

CFQ-ANN 264.813 14,105 

Random Reads (8 threads) TP MB/sec Efficiency (Ops/%CPU) 

CFQ 9.1 2,580 

CFQ-ANN 9.191 2,399 

Random Writes (8 threads) TP MB/sec Efficiency (Ops/%CPU) 

CFQ 40.1 2,100 

CFQ-ANN 40.501 1,953 

Mixed Worklaod (8 threads) Ops/second Efficiency (Ops/%CPU) 

CFQ 11,040 2,250 

CFQ-ANN 11,482 2092.5 
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7.0 Conclusions & Acknowledgments 
 

The main perspective of this paper was on introducing the (rather complex and unique) Linux 2.6 
IO stack, focusing on the block IO layer and the available IO schedulers. A layered methodology that is 
based on Linux 2.6 trace tools to quantify, analyze, and ultimately optimize Linux 2.6 IO performance was 
elaborated on. The discussed (potential) IO request starvation issues that are possible in a CFQ IO 
scheduler environment were targeted via the introduction of a Hopfield network based algorithm that 
addresses the (static) quantum behavior in the IO scheduler. For the benchmarks conducted for this study, 
the results disclosed a slightly higher throughput potential and a more balanced IO behavior under increased 
CPU utilization. While the proposed ANN algorithm showed potential, code optimization and a much more 
comprehensive benchmark study has to be conducted to reach any conclusion on the usefulness of the 
suggested approach.  

 
Jens Axboe (Oracle) maintains the Linux 2.6 block IO layer. Next to all his contributions to the CFQ 

scheduler, he also developed the blktrace tool. Allan Brunelle (HP) significantly contributed to the rapid 
evolvement and acceptance of the blktrace tool set by the Linux community. Some of the graphs shown in 
Section 5 are courtesy of the HP scalability and performance group (Allan Brunelle). Next to these 2 Linux 
OS engineers, there are too many others to name here, engineers who contributed countless hours and 
hundreds of lines of code to optimize the Linux 2.6 IO framework.  
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Appendix A; Linux 3.x IO Subsystem 
 
 The next few paragraphs discuss the 3 IO schedulers available in the Linux 3.x IO framework (it 
has to be pointed out that the anticipatory IO scheduler has been dropped as of Linux kernel version 2.6.33). 
Each IO scheduler has a different performance behavior, and hence, the internal working of each scheduler 
has to be known when designing and implementing Linux server systems.  
 
 
CFQ IO Scheduler (the Linux 2.6/3.x Default IO Scheduler) 
 

The CFQ scheduler operates by placing synchronous requests that are submitted by threads into a 
number of per-thread queues, and then by allocating actual time-slices for each of the queues to access the 
(physical) IO subsystem. The length of the time-slice, as well as the number of IO requests that a queue is 
allowed to submit depends on the IO priority of the given thread. Asynchronous IO requests for all threads 
are bundled together (priority based) in a few queues. By design, good aggregate throughput behavior is 
achieved by allowing a thread queue to idle at the end of a synchronous IO batch, thereby allowing the IO 
framework to anticipate (short-term) close IO requests from the same thread (similar to the deadline IO 
scheduler discussed below). This behavior is considered a natural extension of granting actual IO time slices 
to a thread. The designers behind the CFQ scheduler created the concept of having actual IO queues for 
each thread. These queues are created ad-hoc for each particular thread. Further, the designers segregated 
the concept of IO into two distinct sections, synchronous and asynchronous IO. Synchronous IO is important 
as the application threads have to stall until the IO request completes. To illustrate, if an application read() 
request does not hit in either the cache or the memory subsystem, the application read() request has to 
block until the data is available in memory, a scenario that obviously has a profound impact on application 
performance. In most circumstances, write() requests are asynchronous. Ergo, the write() requests are 
pushed into the memory subsystem, if possible consolidated, and flushed to disk either time-based, or 
based on the state of the memory subsystem.  

 
Next to distinguishing between synchronous (which are favored) and asynchronous IO operations, 

the CFQ design also prefers read over write operations. As already discussed, read requests have the 
potential to stall application processing, impacting aggregate systems performance. Further, read requests, 
based on the elevator approach, may starve other read requests that disclose (from an IO geometry 
perspective) long-distance cases (based on the currently processed IO batch). Therefore, favoring read over 
write operations (in some circumstances) may improve aggregate read IO responsiveness, and reduce the 
probability of read IO starvation. Based on the dynamic nature of IO operations (and the corresponding 
priority scenarios) though, there is always a possibility that an IO request gets pushed back in a queue, and 
hence gets delayed. To combat such a behavior, in CFQ, each thread is associated with a time-out value. If 
the IO thread is not executed within that epoch, as the time expires, the IO thread is instantly scheduled for 
execution. As with all Linux 2.6 IO schedulers, the designers of the CFQ IO scheduler exported several 
tuning parameters into user space. In other words, the actual performance behavior of the CFQ scheduler, 
based on the application workload and the setup of the physical IO subsystem, can be adjusted/modified by 
the user community. 
 
 
The noop IO Scheduler 
 

The noop scheduler inserts the set of I/O requests into a simple, unordered FIFO queue and only 
provides simple IO request merging. The noop scheduler is very effective in environments where IO 
performance optimization is incorporated in a lower layer of the (physical) IO stack. In other words, the noop 
scheduler is normally chosen in cluster environments that have SAN access. Further, the noop scheduler is 
best used with solid state disks (SSD) or any other device that can not benefit from re-ordering of multiple 
I/O requests at the Linux IO scheduler level.  
 
 
The Deadline IO Scheduler 
 

The deadline I/O scheduler incorporates a per-request expiration-based approach and operates on 
5 I/O queues. The basic idea behind the implementation is to aggressively reorder requests to improve I/O 
performance while simultaneously ensuring that no I/O request is being starved. More specifically, the 
scheduler introduces the notion of a per-request deadline, which is used to assign a higher preference to 
read() than write() requests. The scheduler maintains the 5 I/O queues. During the enqueue phase (see 
Figure 1A), each I/O request gets associated with a deadline, and is being inserted in I/O queues that are 



either organized by the starting logical block number (a sorted list) or by the deadline factor (a FIFO list). 
The scheduler incorporates separate sort and FIFO lists for read() and write() requests, respectively. The 5

th
 

I/O queue contains the requests that are to be handed off  to the device driver. During a dequeue operation, 
in the case where the dispatch queue is empty, requests are moved from one of the 4 (sort or FIFO) I/O lists 
in batches. The next step consists of passing the head request on the dispatch queue to the device driver 
(this scenario also holds true in the case that the dispatch-queue is not empty).  

 
The logic behind moving the I/O requests from either the sort or the FIFO lists is based on the 

scheduler’s goal to ensure that each read() request is processed by its effective deadline, without starving 
the queued-up write() requests. In this design, the goal of economizing the disk seek time is accomplished 
by moving a larger batch of requests from the sort list (logical block number sorted), and balancing it with a 
controlled number of requests from the FIFO list. Hence, the ramification is that the deadline I/O scheduler 
effectively emphasizes average read() request response time over disk utilization and total average I/O 
request response time. Benchmarks have shown that some database applications do perform very well with 
the deadline IO scheduler.  
 
Figure 1A: Linux 2.6/3.x I/O Stack 

 
 

 
 
 
 


