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Abstract
In this paper we show how to take into ac-

count kernel overheads in classical real-time fea-
sibility conditions for Fixed Priority (FP) schedul-
ing where tasks having the same fixed priority are
scheduled FP/FIFO. We consider the periodic task
model with arbitrary deadlines and an event driven
OSEK kernel. The feasibility conditions are based
on the worst case response time computation of the
tasks. We identify the sources of kernel overheads
that influence the response time of the tasks. In
such a system the overheads are due to the context
switching that activates/terminates and resched-
ules tasks and to the granularity of the periodic
timer used to implement the periodic task model.
We show how to take into account those overheads
in the classical FP/FIFO feasibility conditions. We
compare the worst case response time obtained
with kernel overhead to the response time obtained
on a real event driven OSEK implementation. We
show that the kernel overheads cannot be neglected
and that the theoretical results are valid and can be
used for a real-time dimensioning.

1 Introduction
Fixed Priority (FP) preemptive scheduling of pe-
riodic tasks in real-rime systems has been exten-
sively studied in the last thirty years. The charac-
teristics of a periodic task τi are defined in table 1.

Symbol Description
Ci The worst case execution time (WCET)
Ti The period of the task
Di The deadline constraint (a task released

at time t must be executed by t +Di)
Pi The priority of the task (priority 0 is the

lowest priority)

Table 1. Characteristics of a periodic
task τi

The starting point for preemptive FP scheduling is
in [6] that proposed a simple polynomial time suf-
ficient feasibility condition for the Rate Monotonic
(RM) algorithm. The Feasibility Conditions (FC)
have then been extended by [4] in the case where
∀i,Di ≤ Ti and by [8], [3] for tasks with no obvious
relation between Di and Ti (arbitrary deadlines).
We consider in this paper arbitrary deadlines. The
feasibility conditions are based on the worst case
response time computation for any periodic task.
[7] show that the feasibility conditions obtained
for FP can be improved considering that tasks
with the same fixed priority are scheduled FIFO.
This scheduling, denoted FP/FIFO is the one
considered in this paper.
The scheduling model used in the FC is the event
driven model. We can notice that classical FC
either do not consider kernel overheads or the
preemption cost is included as an extra duration
in the WCET of the tasks, leading to imprecise
FC. For the time driven model, [8] showed how
to take into account the cost of the scheduler.
The scheduler behaves as periodic tasks with
a preemption cost that can be included in the
feasibility conditions. Yet, in the event driven
model, the solution to increase the durations of the
tasks to take into account kernel overheads can
be very pessimistic as it always considers a worst
case maximum number of preemptions for a task.

We propose in this paper to study the sources
of kernel overheads for the preemptive FP/FIFO
scheduling in an event driven kernel. We show
how to integrate the overheads of the kernel in
the classical theoretical feasibility conditions.
Based on those feasibility conditions, it is possible
to design and prove an OSEK real-time system
before implementation. Thus, providing real-time
dimensioning.
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We consider an event driven implementation of
OSEK. OSEK standard has been initiated in 1993
by several german companies like BMW, Bosch,
Daimler-Benz, Opel, and Siemens. The objectives
were to save money, with a standard OS and
to increase the software compatibility between
manufacturers by using standard interfaces for
all processors and network protocols. The OSEK
operating system offers the necessary functionality
to support event driven scheduling. Yet, the
current approach used for system dimensioning
leads to overestimate the overhead of the operating
system, without a precise analysis of the operating
system leading to a pessimistic dimensioning. e.g.
developers generally limit the CPU of the tasks to
allocate the rest of the CPU to the operating system
without a good characterization of the OS. In this
paper, we propose to characterize the overheads of
an OSEK kernel to propose a deterministic system
dimensioning.

In section 2, we recall the principles of an OSEK
kernel. We then describe in section 3 the envi-
ronment used and the sources of kernel overheads.
We identify different sources of overheads. First,
the time granularity chosen in the periodic timer
used for the periodic model implementation. A
wrong choice of granularity may lead to a smaller
or higher period used by the kernel w.r.t a periodic
task, that must be taken into account in the feasi-
bility conditions. Second, we focus on the activa-
tion/termination and context switch overheads. In
section 4, we show how to integrate the identified
kernel overheads in the theoretical FC of FP/FIFO.
In section 5, we propose to compare the theoret-
ical worst case response times with kernel over-
heads to the experimental results obtained with a
real OSEK implementation showing that our anal-
ysis is relevant for system dimensioning. Finally,
we conclude.

2 OSEK characteristics

In subsection 2.1, task management in OSEK is
exposed. The scheduling policy of OSEK is de-
tailed in subsection 2.2. Then, the alarm mecha-
nism, used to implement the periodic task model is
described in subsection 2.3.

2.1 Task management

Two different task concepts are provided by the
OSEK operating system: basic tasks, and extended
tasks. Extended tasks are distinguished from basic
tasks by being allowed to wait for events for com-
munications between tasks and ressources manage-

ment. The OSEK operating system is responsi-
ble for saving and restoring task context in con-
junction with task state transitions whenever nec-
essary. We are interested in this paper in the over-
heads due to the switching task mechanism and to
the alarms treatment used to implement the peri-
odic task model. We therefore focus on basic tasks
which have three possible states (see also figure 1):

• Running: In the running state, the CPU is as-
signed to the running task, so that its instruc-
tions can be executed. Only one task can be
in this state at any time, while all the other
states can be adopted simultaneously by sev-
eral tasks.

• Ready: All functional prerequisites for a tran-
sition into the running state exist, and the task
only waits for election of the processor.

• Suspended: In the suspended state, the task
is passive and can be activated.

Figure 1. Basic task state model

We now describe the transitions between the states
exposed in the figure 1:

Transi-
tion

Former
state

New
state

Description

Acti-
vate

Susp-
ended

Ready A new task is set into
the ready state by the
service ActivateTask.

Start Ready Run-
ning

A ready task selected
by the scheduler is ex-
ecuted.

Preempt Run-
ning

Ready The scheduler decides
to start another task.
The running task is put
in the ready state.

Termi-
nate

Run-
ning

Susp-
ended

The running task
completes and self-
suspends by the service
TerminateTask.

Table 2. States and status transitions
for basic tasks

In the OSEK operating system, a task can complete
by calling the service TerminateTask. The OSEK
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operating system also provides the service Chain-
Task to ensure that a prescribed task activation is
performed just after the completion of the running
task. This service is not used for periodic tasks and
therefore will no further be considered. Hence, in
this paper, ending the task without a call to Ter-
minateTask is strictly forbidden. Task activation is
performed using the operating system service Ac-
tivateTask. After activation the task is ready to ex-
ecute. The following figure illustrates the interac-
tions between two tasks suspended at time 0 and
the evolution of their states with time. Task τ1 is
set to the running state and later preempted by a
task τ2, of higher priority.

Figure 2. Evolution of the states of
two basic tasks

2.2 Scheduling policy

In the OSEK operating system, there are three dif-
ferent scheduling policies: full preemptive, non
preemptive, and mixed preemptive. In the later
case, a system is composed of both preemptive
and non-preemptive tasks. In this paper, we con-
sider Full preemptive scheduling as it maximizes
the kernel overheads we want to study. Full pre-
emptive scheduling means that a running task may
be put into the ready state, as soon as a higher pri-
ority task gets ready. The preempted task context
is saved so that it can be resumed at the situation
where it was preempted.

2.3 Alarm mechanism

The alarm mechanism allows implementing the
periodic task model. Each alarm has two parame-
ters: the time where it starts for the first time, and
its period. This mechanism uses the OSEK time
base to count the time which is different from the
CPU time.

The OSEK time granularity has a duration Ttick,
multiple of the internal clock cycle of the proces-
sor. The use of a timer enables the processor to
create a periodic interrupt. The CPU load due to
this interrupt is discussed in subsection 3.2.

3 Kernel overheads

Because several OSEK versions exist we have
to describe our development environment. Our
OSEK operating system is based on the OSEK-
OS-specification version 2.2 provided by Vector
Corp [2]. Our target device is a dsPIC30F6014
which is provided by Microchip and excited by a
quartz at 7,3728 MHz. The integrated Phase Lock
Loop multiplies this frequency by 16. According to
the structure of dsPIC, each instruction requires 4
quartz oscillations. Thus, the internal cycle is equal
to 4

16×7372800 ≈ 33.91ns. Different measurements
have to be made in order to determine the kernel
overheads of OSEK and to validate our tests and
experimentations. In subsection 3.1, we explain
our measurement methods. Then, we describe the
OSEK’s overheads in subsection 3.2. Overheads
measurements are shown in subsection 3.3.

3.1 Measurements methods

We have done two kinds of measurements. We
first determine the influence of the Tick Time on
both the worst case response times and the real
values of the periods chosen by the kernel. Then
we study the influence of the kernel on the worst
case response times of the tasks.

The worst case response times of the tasks de-
pends on the WCET of the tasks.Each task is
only composed of a simple empty loop which
corresponds to ” f or(i = 0; i < EndLoop; i ++);”.
To determine the WCET, we use a standard
simulation tool MPLab, which is also provided
by Microchip Corp., depending on the value of
”EndLoop” constant. Thus, no uncertainty is
introduced in the execution times of the tasks (we
only want to measure the kernel overheads, not the
WCET uncertainty).

We have developed a software which automatically
measures several the worst case response time of
several activations for each task in the worst case
scenario corresponding to lemma 2 . This soft-
ware uses a 16-bit timer to make his measurements
which are stored in RAM. Once all measurements
are made, these ones are transmitted via a serial
port at 115200 bauds. Thus, the transmission does
not influence the obtained results.

3.2 OSEK’s overheads

Like any operating system, OSEK needs to gener-
ate its own time base, called the Tick Time, based
on an interrupt having a period Ttick. The Tick Time
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is the only interrupt source in this study. As de-
scribed in subsection 2.3, this Tick Time is used
to manage the alarms in charge of implementing
the periodic task model. Under certain conditions,
this management can add a CPU load which cannot
be neglected. In paragraph 3.2.1, an experiment is
done to show how this Tick Time influences the re-
sponse time of a single task. In addition, because
the switching task mechanism creates another CPU
load, it can also affect the response times of the
tasks when it is too frequent. In paragraph 3.2.2,
an experiment is done to show how this mechanism
can also influence the response time of a task.

3.2.1 Tick Time

To illustrate the Tick Time influence, we consider
the following example where a single task is run by
the system. This task has a period equal to 100ms
and a duration equal to 50ms. We present its re-
sponse time (r) for a given Tick Time period Ttick:

Figure 3. Comparison between the
WCET (dotted curve) to the measured
response time (continuous curve) of
the task

The overhead of the OSEK operating system in-
creases when Ttick decreases. Consequently, the
task response time increases in the same way. As
we can see on figure 3, the response time is mul-
tiplied by at least 2 or more when the Tick Time
is below 295 cycles. The response time is strongly
increased when the Tick Time is equal to 147 cy-
cles.
We now, examine the maximum absolute error ob-
tained on the considered periodic task for a given
value of Ttick. As explained in subsection 2.3, the
periodic model is based on an alarm mechanism
which depends on the Tick Time. That is why, the
period is more precise when Tick Time is multiple
of it. The actual period, denoted T ∗

i for a task τi

chosen by OSEK kernel is as follows:

T ∗
i =

(
1+ �Ti −Ttick/2

Ttick
�
)

Ttick

We can notice that its error never exceeds the du-
ration Ttick/2. Our OSEK implementation uses a
16-bit timer to generate the Tick Time. Hence Ttick

cannot exceed (65535×33,91ns) 2222μs. Finally,
in this interval, the Tick Time should be the great-
est value multiple of the greatest common divisor

between all periods of the tasks to cancel the im-
precision Ttick/2.

3.2.2 Switching task mechanism
Now, we consider a preemptable task of WCET
50ms. This task is interrupted by a higher priority
task which is empty. The Tick Time is constant and
equal to 2949 cycles. Consequently, the Tick Time
constantly increases the response time of 3,5ms.
Thus, when the period of the higher priority task
decreases, we observe the deviation which is only
due to the switching task mechanism on figure 4.

Figure 4. WCET (dotted curve) vs
measured response time (continuous
curve) of the task

We can see that the difference between theoreti-
cal and real durations increases when the period of
the higher priority task decreases. In other words,
switching task mechanism is non-negligible. We
show how to take it into account in section 4.

3.3 Overheads measurements
Now that the overheads are identified, the objec-
tive is to measure them in order to integrate them
into the feasibility conditions. In subsection 3.3.1,
we begin with an illustration of the measured du-
rations. Then, durations of the overheads are given
in subsection 3.3.2.

3.3.1 Illustration of the measured events

In this subsection, we determine the durations of
the overheads previously exposed. Each time a
Tick Time occurs, there are three possible scenar-
ios:

The Tick Time only manages
the alarms but no task must be
activated

The Tick Time manages the
alarms and N tasks must be ac-
tivated

The Tick Time manages the
alarms, N tasks must be acti-
vated and one of them must be
set to the running state (poten-
tially stopping the execution of
a running task)
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The two last scenarios illustrate the cases where
alarms occur and activate their associated task.

3.3.2 Measurements

The table 3 gives the notations used for each over-
heads:

Symbol Description
Ctick The execution time of the

alarms management that occurs
every Ttick.

Cact The execution time required to
activate a task. The state of an
activated task is set to ready.

Csched The execution time required to
schedule the task (if any) that
has just been activated and that
has the highest priority among
all the tasks in the ready state.

Cterm The execution time to terminate
the task and reschedule.

Table 3. Notations of the measure-
ments

The following table 4 gives the results of our mea-
surements obtained for 5 tasks (the number of tasks
considered in section 5) with the software exposed
in section 3.1. These values are the worst case val-
ues obtained with our tools.

Symbol WCET
(cycles)

Ctick 180
Cact 570
Csched 420
Cterm 450

Table 4. Execution times of kernel
overheads

Notice that the previous execution times overheads
may depend on the number of tasks. We consider
the worst case execution times obtained for n = 5
tasks in our experiments (see section 5.

4 Real-time analysis with kernel over-
heads

We now recall classical results in the uniprocessor
context for real-time scheduling. We recall that we
consider preemptive scheduling in this paper.

• A task is said to be non-concrete if its first
release time is not known a priori. In this
paper, we only consider non concrete first
request times, as the first activation request
times are supposed to be unpredictable.

For any task τi,

• hp(i) denotes the set of tasks having a strictly
higher priority than τi.

• l p(i) denotes the set of tasks having a strictly
lower priority than τi but τi.

• sp(i) denotes the tasks having the same prior-
ity as τi.

• Time is assumed to be discrete (task arrivals
occur and task executions begin and terminate
at clock cycles: the parameters used are ex-
pressed as multiples of the clock cycles). In
[1] it is shown that there is no loss of gen-
erality with respect to feasibility conditions
restricting the schedules to be discrete, once
the task parameters are assumed to be integers
(multiples of the clock cycles) i.e. a discrete
schedule exists, if and only if a continuous
schedule exists.

• Given a non-concrete task set, the syn-
chronous busy period is defined as the time
interval [0,L) delimited by two distinct idle
times in the schedule of the corresponding
synchronous release pattern [1]. The value
of L does not depend on the scheduling algo-
rithm but only on the task arrival pattern. L
is called the length of the synchronous busy
period.

• The value of the synchronous busy period
with no kernel overheads, denoted Lno can be
computed using the following recursive equa-
tion [3]:

{
Lm+1

no = W (Lm
no)

L0
no = ∑n

i=1 Ci

The recursion ends when Lm+1
no = Lm

no = Lno,
where for any time t, W (t) = ∑n

i=1� t
Ti
	Ci.

Let τi be a task requested at time t in a busy period
(the processor in fully busy). Let time 0 be the
beginning of the busy period. For such a task we
have the following notations:

• An idle time of level Bi,t , is defined as a time
t ′, such that there are no tasks in sp(i)∪ τi re-
leased at a time smaller than or equal to t ≤ t ′
pending at time t ′.

• A level Bi,t busy period is defined as a time
interval [a,b), such that there is no idle time
of level Bi,t , in [a,b) and such that both a and
b are idle times of level Bi,t .
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• The worst case level Bi,t busy period [7] is
the first busy period resulting from the sce-
nario where all tasks τ j ∈ hp(i)∪ sp(i)∪ l p(i)
are first requested at time 0 and are then peri-
odic and where task τi is periodic from ti,0 to
t, where ti,0 ∈ [0,Ti −1).

Notice that this definition of the worst case level
Bi,t busy period is slightly different from the one
proposed by [5] where only tasks in hp(i)∪sp(i)∪
τi where considered. With kernel overhead, we
show in theorem 1 that a task in l p(i) can also in-
fluence the worst case response time of a tasks τi

due to its activation requests that must be taken into
account by the kernel. Furthermore, with FIFO
scheduling, we have to consider for tasks τi all the
first request times of task τi at time ti,0 ∈ [0,Ti −1)
[7].

• Uno = ∑n
i=1

Ci
Ti

is the processor utilization fac-
tor, i.e., the fraction of processor time spent in
the execution of the task set [6] without kernel
overheads. An obvious necessary condition
for the feasibility of any task set is Uno ≤ 1
(this is assumed in the sequel).

Lemma 1 [4], [7], The worst-case response time
ri of a non-concrete periodic task τi scheduled
FP/FIFO with no kernel overhead is found in the
first worst case level Bi,t busy period and ri is the
solution of ri = maxt∈S(ri,t), where:

ri,t = wi,t − t
S = ∪τ j∈sp(i)∪τi

{k×Tj}∩ [0,Lno[
wi,t = ∑τ j∈sp(i)∪τi

(1+ � t
Tj
�)Cj +∑ j∈hp(i)�wi,t

Tj
	Cj

Proof: The influence of the task in hp(i) is the
same as the one proposed in [4]. The difference
between the equation of ri proposed in [4] is the
term ∑τ j∈sp(i)∪τi

(1 + � t
Tj
�)Cj that takes into ac-

count FIFO scheduling for all tasks having the
same priority as τi. With FIFO, a task requested
after time t cannot be executed before τi requested
at time t. We therefore have to consider only tasks
in [0, t]. In [7], it is shown that only times t cor-
responding to the request times of the tasks in
sp(i)∪ τi in the synchronous busy period must be
considered.

Lemma 2 The worst case response time of a pe-
riodic task with kernel overheads is found in the
worst case level Bi,t busy period.

Proof: For a task τi, the kernel overheads are max-
imized when the number of activations of tasks in
hp(i) and l p(i) are maximized. Leading to the
same worst case scenario for tasks in hp(i) as in

[4]. Notice that we also have to consider the over-
heads of the tasks activations (achieved by the ac-
tivateTask) in l p(i) whose number is maximized
when tasks in l p(i) are released as described in the
worst case level Bi,t busy period.

We now extend lemma 1 to take into account the
OSEK kernel overheads. The first overhead de-
scribed in subsection 3.2.1 is due to the tick time
value leading for a tasks τi to consider the modi-
fied period T ∗

i . This overhead is considered in the
following theorem.

Theorem 1 The worst case response time ri

of a periodic task τi scheduled FP/FIFO with
the OSEK kernel overheads is the solution
of the following equation: ri = maxt∈S(ri,t),
where ri,t = wi,t − t, S = ∪Ti−1

ti,0=0S(ti,0)
such that S(ti,0) = ti,0 + k.Ti,k ∈ N,k ≤ K,
where K is the smallest value such that
wi,ti,0+K.Ti ≤ (ti,0 +(K +1).Ti), and

wi,t = ∑τ j∈sp(i)∪τi
(1 + � t

T ∗
j
�)(Cj +

Cterm) + ∑τ j∈hp(i)�wi,t
T ∗

j
	(Cact + Cj +

Cterm) + ∑τ j∈l p(i)∪sp(i)∪τi
�wi,t

T ∗
j
	Cact +

maxτ j∈τi∪hp(i)�wi,t
T ∗

j
	Csched + � wi,t

Ttick
	Ctick

Proof: We consider a task τi released at time t in
its worst case worst case level Bi,t busy period. Let
wi,t be the completion time of τi. wi,t is composed
of five parts:
The first part is equal to the workload to execute
and terminate tasks in sp(i)∪τi limited to the inter-
val [0, t] due to FIFO scheduling: ∑τ j∈sp(i)∪τi

(1 +
� t

T ∗
j
�)(Cj +Cterm)

For any request of task in hp(i), the kernel must ac-
tivate, run and terminate the tasks. The activation
is taken into account in the second part of the equa-
tion. Leading to a workload : ∑τ j∈hp(i)�wi,t

T ∗
j
	(Cact +

Cj +Cterm)
For any task in l p(i)∪sp(i)∪τi, the scheduler must
at least activate the tasks according to their request
times and put it in the ready state. Leading to the
third part: ∑τ j∈l p(i)∪sp(i)∪τi

�wi,t
T ∗

j
	Cact

Considering the last part of the equation. The
scheduler is called to save/restore the context of
task τi every time a task with a priority higher
than or equal to τi (including τi as τi can be the
task with the highest priority) is run. The max-
imum number of scheduler calls is bounded by:
maxτ j∈τi∪hp(i)�wi,t

T ∗
j
	Csched

We must also take into account the alarm overhead.
By assumption, all the alarms are managed by a pe-
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riodic timer of period Ttick of duration Ctick. Lead-
ing to an overhead equals to � wi,t

Ttick
	Ctick.

The set S corresponds to all the request times
of τi that must be checked. The set S(ti,0) =
ti,0 + k.Ti,k ∈ N,k ≤ K corresponds to a scenario
where the first request of task τi occurs at time ti,0.
The value of K corresponds to the activation re-
quest of τi at time ti,0 +K.Ti such that wi,ti,0+K.Ti ≤
ti,0 + (K + 1).Ti. wi,ti,0+K.Ti is the end of the level
Bi,ti,0+K.Ti busy period and the task released at time
ti,0 + (K + 1).Ti is released in a new busy period
that does need to be checked (from lemma 2).

Remarks:

• The set S is an extension of [8] where, in the
case of a task set with tasks having differ-
ent priorities, we only have to check the set
S(0). From the definition of a level Bi,t busy
period and because of FIFO scheduling, we
must check more request times.

• If tasks are scheduled according to
Rate Monotonic [4] then, the value
maxτ j∈τi∪hp(i)�wi,t

T ∗
j
	Csched is maximum

for the task in hp(i)∪ τi having the smallest
period, the one chosen by Rate Monotonic.
Hence, theorem 1 leads in this case to the
exact worst case response times of the tasks.

Theorem 2 A sufficient feasibility condition for
the scheduling of periodic tasks scheduled with
preemptive FP with the OSEK kernel overheads is
(where Tα is the period with the smallest value in
task set):

∀τi ∈ τ,ri ≤ Di (1)

Uno +
n

∑
j=1

(
Cact +Cterm

T ∗
j

+
Csched

Tα
+

Ctick

Ttick
) ≤ 1 (2)

Proof: Equation (1) is straightforward. ri is de-
termined from theorem 1. Equation (2) is clearly
necessary as the kernel overheads add a duration
Cact + Cterm to every tasks and the scheduler is
called at least once for every activations of the task
with the minimum period leading to a processor
utilization Csched

Tα
.

5 Experimentations
In this section, we experiment the previous theoret-
ical results on two task sets. Each of these task sets
is composed of five preemptive periodic tasks with
arbitrary deadlines. These task sets are described
in the following tables. The first task set has been
created with a Ttick equal to 9997 cycles in order to
be more realistic :

Task Ci (cycles) Di (cycles) Ti (cycles) Pi

τ5 299991 49985 69979 2
τ4 699790 15995200 15995200 1
τ3 899730 19994000 15995200 1
τ2 4998500 29991000 31990400 1
τ1 9997000 63980800 63980800 0

Table 5. Task Set 1 (Ttick = 9997cycles)

The second task set has been created with a Ttick

parameter equal to 796 cycles in order to increase
the CPU load due to the Tick Time. This CPU load
is, in worst case, equal to Ctick/Ttick = 0,23. In the
next task set, only fifo tasks τ2, τ3, and τ4 verify
Di > Ti:

Task Ci (cycles) Di (cycles) Ti (cycles) Pi

τ5 15920 31840 318400 2
τ4 71640 1273600 318400 1
τ3 79600 2547200 636800 1
τ2 398000 5094400 1910400 1
τ1 796000 7641600 7641600 0

Table 6. Task Set 2 (Ttick = 796cycles)
We now compare in each task set for any task τi the
theoretical response time without overhead r0

i , the
theoretical response time with kernel overheads r1

i
and the measured response time r2

i in a real OSEK
system.

Task r0
i (cycles) r1

i (cycles) r2
i (cycles)

τ5 29991 34431 31092
τ4 11546535 12420108 12201421
τ3 11546535 12420108 12201384
τ2 11546535 12420108 12220185
τ1 31840445 46573406 45871157

Table 7. Comparison between the dif-
ferent response times for task set 1

In the task set 1, we observe that each task is acti-
vated once at any time at the maximum.

Task r0
i (cycles) r1

i (cycles) r2
i (cycles)

τ5 15920 25400 22860
τ4 581080 783960 753191
τ3 581080 783960 753498
τ2 581080 783960 753596
τ1 2778040 5608300 5088369

Table 8. Comparison between the dif-
ferent response times for task set 2

In the task set 2, the tasks τ3, and τ4 may be reacti-
vated during their execution.
Now, we determine two significant ratios in tables
9 to 10 for each task set and for each task to char-
acterize the performance of our theoretical worst
case response time with kernel overheads.
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Deviation τ5 τ4 τ3 τ2 τ1
1−r2

i /r1
i

100 9.70 1.76 1.76 1.61 1.51
1−r0

i /r1
i

100 12.90 7.03 7.03 7.03 31.63

Table 9. Performance of theoretical
worst case response time with kernel
overheads for task set 1

Deviation τ5 τ4 τ3 τ2 τ1
1−r2

i /r1
i

100 10.00 3.92 3.89 3.87 9.27
1−r0

i /r1
i

100 37.32 25.88 25.88 25.88 50.47

Table 10. Performance of theoretical
worst case response time with kernel
overheads for task set 2

In tables 9 to 10, the first line provides the percent-
age of deviation between the theoretical response
time with kernel overheads and the measured
response time obtained with our OSEK system.
The deviation is always important for the task τ5 as
it has the smallest execution time. The overheads
are accordingly more important.

The deviations obtained for the tasks τ2, τ3, and τ4

scheduled FIFO on their priority level decreases as
the Ttick parameter increases. Because they depend
on each other, those tasks are greatly influenced by
the kernel overheads. Because task τ1 has the low-
est priority, it is often preempted by higher-priority
tasks. In others words, the task τ1 is influenced by
the overheads of all higher priority tasks. That is
why its deviation is always important. In all cases,
the deviations are small and enable to use the the-
oretical approach for a real-time dimensioning. In
tables 9 to 10, the second line shows the deviation
between the theoretical approach with and without
kernel overheads showing that the deviation ranges
from 7,03% to 50,47%. Hence, the kernel over-
heads cannot be neglected and influences signifi-
cantly the worst case response times of the tasks.

6 Conclusion

In this paper we have studied the impact of ker-
nel overheads in the theoretical feasibility condi-
tions of preemptive FP/FIFO scheduling of peri-
odic tasks. We have considered an event driven
OSEK system proposed by Vector Corp. We have
identified the sources of kernel overheads and have
shown how to integrate them in the worst case re-
sponse times of the tasks, used by the feasibility
conditions. We have shown in our experiments that
the overestimation of the theoretical worst case re-

sponse times does not exceed 10,00% of the real
worst case response times and that the feasibility
condition without kernel overhead are not valid.
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