Efficient and Adaptive Proportional Share 1/0 Scheduling

Abstract Fairness and I/O efficiency are known to be quite diffi-

cult to optimize simultaneously for multiple applications

In most data centers, terabytes of storage are commonlyhaing 1/0 resources. Disk schedulers usually attempt
shared among tens to hundreds of hosts for universal agg maximize overall throughput by reducing mechanical
cess and economies of scaling. Despite much prior rége|ays while serving 1/0 requests. The individual ap-

search, most storage arrays do not provide useful mechyjication (or process) making the 1/0 request is usually
anisms to provide Quality of service (QoS) guarantees tq,t considered in the scheduling decisions. The conven-

applications. Storage administrators are often forced tqjon 4 pelief is that maximizing the overall throughput
isolate workloads using expensive storage provisioing;q good for all applications accessing the storage sys-

We believe that lack of adoption of QoS mechanisms isem and providing fairess can substantially reduce the
mainly due to the low I/O efficiencies that result from o4l throughput. In contrast, other resources in a sys-
the various proposed QoS techniques. This motivateg,, such as CPU, memory, and network bandwidth can

the need for more flexible QoS mechanisms since thg, multiplexed based on per-process behavior by using

efficiency of I/O devices depends crucially on the order,, (| known fairness algorithms [2, 5, 7, 18, 20]. We be-
in which the requests are served. e

, er In this paper, we affjeye that the existing QoS mechanisms proposed so far
tempt to alleviate the I/O efficiency concerns of propor-paye not adequately addressed the problem of losing 1/0
tional share schedulers. We first provide a frameworkyiciency due to proportional sharing. The main issue at
to _st_udy the inherent trade-off be_tween fairness and 1/Q,5nd is to find the right balance between the two oppos-
efficiency. We propose two main parametersegree g forces of proportional share guarantees and 10 effi-

of concurrencgndbatch sizeas control knobs. We find ciency. A QoS mechanism for storage systems should
that significantlyhigher 1/0 efficiencycan be achieved 5 e the following properties:

by slightly relaxing short-term fairnesguarantees. We _ _ )
then present a self-tuning algorithm that achieves good ® Fairmess guarantees: to provide proportional
efficiency while still providing fairness guarantees. The ~ Share fairmess to different applications.

algorithm doesn't require any workload-specific param- ® 1/O efficiency: to achieve high I/O efficiency com-
eters to operate. Experimental results indicate that an ~ Parable to workloads running in isolation.

1/0 efficiency of over 90% is achievable by allowing the ¢ Controlknobs: to provide the ability to control the

scheduler to deviate from proportional service for afew  inherent trade-off between the 1/0 efficiency and
seconds at a time. the proportional share guarantees.

e Work conservation: storage system is not kept
1 Introduction idle when there are pending requests.

Increasing cost pressures on IT environments have been In this paper, we first provide a framework to sys-
fueling a recent trend towards storage consolidationfematically study the trade-off between fairness and ef-
where multiple applications share storage systems tdiciency and propose simple mechanisms to adaptively
improve utilization, cost, and operational efficiency. tune the system to find a balanced operation point. We
The primary motivation behind storage QoS researcHind that I/O efficiency can be improved if we relax the
has been to alleviate problems that arise due to shafairness granularity the minimum time interval over
ing, such as handling diverse application I/O require-which the QoS mechanisms guarantee fairness in pro-
ments and changing workload demands and characteportional shares of the contending applications. This
istics. For example, the performance of interactive oris significant as it indicates that it may be possible to
time-critical workloads such as media serving and transimprove the 1/0O efficiency without greatly affecting the
action processing should not be hurt by I/O intensiveQ0S guarantees.

workloads or background jobs such as online analyt- While the tension between fairness and efficiency is
ics, file serving or virus scanning. Despite much priorwell known, our second main contribution lies in pro-
research [3, 16,17, 19], QoS mechanisms do not enjoyiding a novel online, adaptive mechanism to improve
widespread deployment in today’s storage systems. Wihe 1/O efficiency of proportional share schedulers. We
believe this is primarily due to the low /O efficiencies propose two control mechanisms to achieve these prop-
of the existing QoS mechanisms. erties:variable size batchingndbounded concurrency



A batch is a set of requests from an application that aren fairness. Stonehenge [11] and SCAN-EDF [16] also
issued consecutively without intervention from other ap-consider both seek times and request deadlines. Other
plications. Concurrency refers to the number of requestapproaches such g€lock [10] do burst handling and
outstanding at the device at any given time. The firstprovide fair scheduling to handle both latency deadlines
mechanism allows each application to choose a batchnd bandwidth allocation. A fundamental limitation of
size appropriate to its access characteristics. This is usexisting techniques is that they focus mainly on fairness
ful for workloads that exhibit spatial locality as it re- and do not evaluate the trade-off between fairness and
duces the delays due to excessive disk seeks. The sek© efficiency. Our work extends one such algorithm to
ond mechanism allows the fair-share scheduler to keep support a balance between fairness and efficiency.

sufficient number of pending requeste(level of con- Among the scheduling-based techniques, Zygaria
currency) at the device, so that existing seek-optimizing21] and AQuA [22] use hierarchical token buckets to
schedulers can provide higher throughput. However, th&upport QoS guarantees for distributed storage systems.
concurrency needs to be bounded if the fairness guararpygaria supports throughput reserves and throughput
tees are to be honored. We show that these two mech;aps while preserving I/0 efficiency, but it neither pro-
anisms are effective in improving 1/O efficiency while yides mechanisms for trading fairness with efficiency
only slightly increasing the fairness granularity for the nor adapts scheduling based on the workload. Simi-
QoS guarantees. We also develop an algorithm thafarly, the ODIS scheduler in AQUA employs a “band-
adapts the settings of these two parameters based on thgdth maximizer” that attempts to increase aggregate
workload characteristics. This is useful as it allows us tothroughput as long as the QoS assurances are not vio-
keep the 1/O efficiency high in the presence of dynam-jated. While ODIS employs a throttling-based heuris-
ically changing workloads without impacting the QoS tjc algorithm that adjusts the token rate based on overall
guaranteesig. the fairness granularity). Our analysis disk utilization, it does not consider individual workload
shows that in worst case, the fairness granularity is a lincharacteristics. In cases where the system is over-loaded
ear function of these two parameters. Previous work byand not all QoS requirements can be met, there is no
Jinet al(SFQ(D) [12]) has only addressed the impact of guarantee of proportional service. No special effort is
the concurrency parameter on fairness. made to maintain the efficiency of sequential and spa-
In the remainder of this paper, we first discuss thetially local workloads. By contrast, our framework guar-
prior work in section 2 and describe our system modelantees that, when workloads are backlogged, the service
in section 3. Then, we describe our mechanisms to tradgiill be allocated proportionately between the workloads
off between 1/O efficiency and the fairness granularity inpased on their weights; this guarantee is proven theoret-
section 4, and develop analytical bounds for the fairnesgcally and demonstrated experimentally. In addition, our
granularity in section 5. We evaluate our approach inmechanism enables high 1/O efficiency for spatially lo-
section 6 and then conclude. cal workloads by trading off fairness granularity - i.e.,
by allowing brief deviations from proportional service.
2 Related Work

Other techniques such as Fahrrad [15] and Argon [19]
Providing QoS support has been an active area of reare based on 10 time multiplexing at the disk. This has
search in systems and many proposed mechanisms in thlee advantage of preserving the 10 access patterns of an
networking domain have found their way into deploy- application and avoiding interference with other work-
ments. For example, (WFQ [BNV F?Q[2], SFQ[6,8,9], loads. Fahrrad [15] tries to provide real time guarantees
DRR [18]) have been adopted for traffic shaping andfor disk time utilization. Reserving disk time allows one
providing fairness for network link bandwidth. Some to charge based on 10 workload, which can be quite use-
variants of these algorithms have also been proposed fdul in some cases. In most storage systems the concur-
storage systems. Existing approachesQosS in stor-  rency of multiple 10s pending at the same time, makes
agecan be classified into three main categories: (1) Faiit very difficult to estimate per 10 completion time. In
gueuing based scheduling algorithms, (2) time slicing atArgon [19], each application is assigned a time quan-
the device, and (3) control theoretic approaches. tum dedicated to its 10 requests. One issue with this
Fair queuing based techniques use variants ofpproach is the potential for increased latency. 10 re-
the WFQ algorithm [5] to provide QoS. YFQ [3], quests from an application that miss the application’s
SFQ(D) [12], Avatar [23], and Cello [17] use virtual timeslice (either because they did not complete during
time based tagging to select 10s and then use a seek ofhe timeslice, or arrived after it ended) must wait until
timizer to schedule the chosen requests. Some of thegbe next timeslice to receive service. The worst case la-
techniques have proposed using high concurrency at thiency bounds increase with the number of applications
storage server for higher throughput. However, noneand the duration of the time quantum. Secondly, dur-
of them have studied the impact of such optimizationsing a timeslice the server sees only the requests from the



single application scheduled in that interval. While this | SYMBOLS | DESCRIPTION
improves the efficiency of serving sequential requests, | N number of applications
it decreases the effectiveness of the seek optimizer for| & theith application
random requests, because it does not take all the pend; W weight of applicatiorg
ing requests into consideration. Q fair scheduler queue f@;
Control theoretic approaches such as Triage [13] and| Gi batch size for applicatioa
Sleds [4] use client throttling as a mechanism to ensure| D number of outstanding scheduled
fair sharing among clients and may lead to lower uti- requests
lization. Facade [14] tries to provide latency guarantees| Ni(t1,tz) | throughput for applicatios;, alone
to applications by controlling the length of disk queues. | fi(t1;t2) throughput for applicatios;, shared
This can lead to lower overall efficiency and the trade- | & (t1,t2) efficiency of the scheduler
off between the loss of efficiency and latency is not ex- | 7 (t1,tz) | fairness of the scheduler

plored. _ o _
Table 1:Notation used in this paper. The last four metrics

3 System Model are defined over a time intervéh,tp). For notational conve-

_ . nience we omitts,t), since the time interval is implicit.
Our system consists of a storage server that is shared

between a number of applications. Each applicatior} .
has an associatedeight The goal of the proportional ormance _Of a _storage server depends critically upon
share (fair) scheduler is to provide active applicationsthe o_rd_er n Whlch the requests_ are served. For exam-
I/O throughput in proportion to their associated Weights,Ple’ It Is substantlally.m_ore e_ff|C|ent 10 Serve sequen-
while maintaining high efficiency. Théair scheduler tial 1/0Os together. This is unlike other domains, such

is logically interposed between the applications and thé*s networking, where the order in which packets are

storage server. In an actual implementation, it could re—(Jl'Sp"ﬂCheOI does not affect the overall throughput of a

side in the storage server, in a network switch, in a sep-SW'tcr;l' ﬂl:or thr:s rteasf(f)_n_, tis Impogzq[ o tmee:csgre the
arate “shim” appliance [12], or in a device driver stack. overall throughput (efficiency), in addition to a faimess

The fair scheduler maintains a set of input queues, Ongriterion. Efficiency denotgs the ratio of the e_lctu.al Sys-
for each application, and an output queue. Requests af€m throughput to that attained when the applications are

scheduled from the input queues to the output queue andin without interference. Fairness refers to how well the
then they are scheduled on to underlying devices base%pplication throughputs mach their assigned weights.

on some seek optimizing criterion. Similar two level ar-  We first define an efficiency measure that captures
chitectures have also been proposed in earlier works (s¢f€ slowdown due to scheduling the mix of requests
Section 2, where the first level does fair scheduling and@ther than running them in isolation. To motivate the
the second level does seek optimization. def|n|t_|on, consider two applicatiorss and a; which
have isolated throughputs @ = 100 andn; = 200
o [TTTTTTT] o (requests/sec) respectively. Suppose that when run to-
m\ d gether using a fair scheduler, _25 requestapand 40
@ L ‘ \ [T requests oby, were completed in an interval g = 1
schedule . R
Server second. Now, if these requests af were run in iso-
lation (at a rate of 100 reg/sec) they would complete in
0.25 sec; similarly the 40 requestsafwould complete
Figure 1: System Model in 0.2 sec. Hence the total time to complete requests
of both applications using an isolating scheduler would
Notation: The number of applications is denoted aspe T,,, = 0.45 sec. The efficiency of the fair scheduler
N. Thei™ application iss;; its weight isw;, and its queue s T,,/Ts = 0.45. If the fair scheduler were improved
in the fair scheduler IQ| D is the number of outstand- and the measured throughputsgqf and a, increased
ing scheduled requests.e., the number of requests in o 40 and 80 req/sec, the efficiency would increase to
the scheduler output queue plus those outstanding at the0/100+ 80/200)/1 = 0.8. In some cases the use of a
storage server. These and other notations we use afgir scheduler can actually lead to a speedup rather than

n Apps

Qn

summarized in Table 1 for convenient reference. a slowdown by merging the workloads; in this case the
31 Metric Definiti efficiency can exceed 1. For instance, if the measured
: etric Definitions throughputs were 60 and 120 reg/sec, the corresponding

The objective of our system is to provide throughputeéfficiency would be 60100+ 120/200= 1.2.
to applications in proportion to their weights, while  Definition 1 provides a formal definition for the ef-
maintaining high overall system throughput. The per-ficiency measure discussed above. Lemma 1 derives a



simple relation between efficiency and the measured andector of ideal service fractions expected from a fair
isolated throughputs of the applications. schedule. The measure of fairness is the "distance” be-
tween the measured vect& and the ideal vectdn. A
number of different distance measures are discussed in
the statistics literature; we use the well-knolsnnorm
Manhattan distance) as the measure in this paper. The
1 distance between the vectors is defined gsi —w;|.
Note that sincg;w; = 1= y;w, bothW andW’ are unit
vectors under thie; norm.

Definition 1. Efficiency metric €): Let S be a set of
requests serviced together in the interval ty) by the
fair scheduler. Let = (t, —t1). Let T, denote the total
time needed to service the requests in S by running ea
application in isolation. The efficiency of the scheduler
in the interval(ty,t,) is defined as:

E(ta,tz) = Tm/Ts (1)  Definition 2. Fairness index.¢?): Let application aob-
tain a throughput r over an interval(t;,to). The total
throughputis R= 3 ; r;, and the measured weight of a

Proof. Consider the time intervét; ,t,) and suppose the 1S W =ri/R. The fairness index is defined as:

fair scheduler servicg$ requests o&;, i =1,---n, when o _ Y

running all the applications togethdt =t, —t; denotes Flte) = Iz v = 2
the length of the interval. By definition, the through-
put of & in the shared environment=5/Ts. The time
required to service th@ requests ofy in isolation is
given byt/ = B;/n;, sincen; is the throughput o when
running in isolation. The time needed to service all the
requests inS by running each application in isolation
is therefore given byfm = 3t/ = 3 Bi/ni = Ts3iri/ni.
Hence efficiency’(t1,t2) = Tm/Ts = 3 1i/Ni.

Lemma 1. &(ty,t2) = Siri/ni

Note that thel; distance between the vectors, and
hence (t1,t,), can range between 0 and 2. The lower
value is better, since it means that the ratio of the appli-
cation throughputs have a good match with the weights.

Finally, we consider the notion of fairness granular-
ity. A scheduler that is fair over short intervals of time is
also fair over large intervals (by simple aggregation), but
the reverse is not necessarily true. As such, a scheduler

Higher values are better for this metric and and athat is fair over short intervals is strictly fairer than one
value of 1 means that the throughput obtained for ahat is only fair over long intervals. Intuitively, the fair
given workload matches that obtained by running theness granularity of a scheduler is the smallest length of
different applications making up the workload in isola- time over which it is consistently fair; smaller is better.
tion. A value greater than 1 means that the concurrenfhus, a scheduler with a fairness granularity of one sec-
workload has higher throughput than running the appli-ond may deviate from a proportional allocation of ser-
cations in isolation. This happens when random work-vice over intervals shorter than one second, but assures
loads are merged as shown in the experimental results iproportional allocation for measurement intervals of one
Section 4.1. This is because the lower level seek optisecond or longer. The techniques we propose in the next
mizer gets more opportunities to reduce the time spensection work by relaxing fairness granularity in order to
on seeking. Also note that our definition is indepen-gain efficiency. A formal definition of fairness granular-
dent of the weight of the applications. In previous worksity is given below.

Sl.mh as Arg_on [19], _the notion of efficiency is coupled hfinition 3. Fairness Granularitys(fy) is defined as
with the no_tlor_l of fa_urness, Whe_re the expected (_)Utpmthe smallest time duratioa such that95" percentile
for an appl_|cat|on W|th weighty, is w; x n;. Her_ewi is value of the set{.Z(t, + (m— 1)e, ti +me), m—
the normalized weight, such that all of the weights sum; ~.(ta—t1)/e} is less than 4
. . I . ; 2—1 .
to 1. The main benefit of our metric is that it allows us
to compare efficiencies even for schedulers with widely That is, the Fairness Granularity is the smallest inter-
different fairness guarantees. val lengthe, for which at least 95% of the intervals have
We next define a fairness index that measures hova fairness index less thag,.
close the ratios of the throughputs of the different appli- Having looked at the metrics that we use to measure
cations comprising the workload matches the ratios thathe performance of a fair scheduling framework, we now
would result from a proportional allocation. Over the look at various fair scheduling algorithms and the design
interval (t1,t,), let the fair scheduler provide a through- of an efficient fair scheduler.
ut of rj for applicationg;. Thenw! =r;/5r; is the . .
?raction of theptF;woughput tha recleives/i%JthJe shared 4 Fair Scheduler Design
server. By definition, the weight; is the fraction of In this section, we first study the inherent trade-off be-
the throughput thad; should receive from an ideal fair tween the 1/O efficiency and the fairness guarantees of
scheduler. W' = [wy,w,, ---wy] denotes the vector of proportional share I/O schedulers and introduce two pa-
measuredservice fractions and/ = [wy,w»,---wy] the  rameters thatimpact both. We characterize this trade-off
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Figure 2:Bounded concurrency.

experimentally by modifying the 1/0 issue behaviorofa4.1 Bounded Concurrency
proportional share scheduler and using synthetic work- )
loads. We then incorporate our findings into a new de-1he amount of concurrency at the storage device has a
sign for an efficient proportional share 1/0 scheduler. ~ Profound impact on the achievable throughput. This is
because higher levels of concurrency allow the scheduler
For our experimental evaluation, we used a modifiedi© IMProve the request ordering so that the mechanical
version of the Deficit Round Robin (DRR [18]) sched- delays are minimized. In_ add|t|0n,_h|gher levels of con-
uler. The basic DRR algorithm performs scheduling de-currency allow RAID devices or striped volumes to take
cisions in rounds: it allocates guantumof tokens to advantage of the multiple disk drives they contain.
each application (or input queue) in a round, and the Proportional share I/O schedulers carefully regulate
number of tokens is proportional to the application’s the requests from each application before issuing them
weight. The number of I0s transferred from an appli-to the storage system. This is necessary for achieving
cation’s input queue to the output queue is proportionathe desired proportionality guarantees that these sched-
to the number of accumulated tokens the application hagllers seek to provide. Unfortunately, this also has the
If the application has no 10s pending in its input queueside effect of limiting the amount of request concurrency
in a round, the tokens disappear. Otherwise, if there ar@vailable at the storage devices. As aresult, even if there
both 10s and tokens left, but there are not enough tois concurrency available at the workload, the DRR algo-
kens to send any more 10s, then the tokens persist to théthm dispatches only a portion of the pending requests
next round (this is the deficit). The DRR algorithm can in a round, and the concurrency levels in storage systems
produce throughput proportional to the application’s astend to be low.
signed weight, where the throughput is measured either Our first modification to the DRR scheduler is to make
in bytes/sec, or in 10s/sec (IOPS), by changing how to-the number of outstanding scheduled requésts, con-
kens are charged for the 10s. We use IOPS in this papetrollable parameter. We call this parametiee concur-
rency bound This allows the modified DRR scheduler
Although our adaptations can be combined with mostto keep a larger number of requests pending at the stor-
fair schedulers such as SFQ, WHelc, we chose DRR  age system. Figure 2(a) shows the 1/0 throughput ob-
for two main reasons: (1) the run-time for DRR is O(1) tained by the modified DRR scheduler as a function of
amortized over a number of requests, whereas othethe concurrency bound. For this experiment, we used
schedulers take O(ldd) for N applications; (2) DRR three workloads and set their weights in the ratio 1:2:3.
provides similar fairness guarantees as other proporAll three were closed workloads, each keeping a total
tional share algorithms; We performed two modifica-of 8 requests outstanding. In the legend, S means a
tions to the basic DRR algorithm so that we can studysequential workload and R means a random workload.
the relationship between 1/O efficiency and the fairnesHence RRR means three random workloads running si-
granularity exhibited by the DRR. The first modification multaneously. Figure 2(a) shows that overall throughput
allows us to control the concurrency of the I/O requestsncreases with higher concurrency levels, and the gains
at the storage system and the second one allows us fa I/0O throughput are substantial. We also plot the effi-
take advantage of the spatial locality of a request streantiency metric for various values of D, as shown in fig-
if any. In the nexttwo sections, we describe each of thesarre 2(b). Note that efficiency is higher than 1 for mixes
modifications in detail and present our experimental rewith random workloads. This is because putting together
sults showing how they impact the I/O efficiency and therandom workloads results in higher seek efficiency. On
fairness granularity. the other hand, sequential workload mix has a lower ef-
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Figure 3:Variable size batching.

ficiency even at large queue depths because of frequedenote the batch size for applicatienasG;. Variable
switching among various workloads and higher seek desize batching allows more requests from a given applica-
lays that do not occur when the sequential workloads aréion to be issued as a batch to the storage system before
run in isolation. switching to the next application. Thus, it reduces inter-
While increasing concurrency improves the 1/O effi- ference among applications to benefit sequential work-
ciency, it also impacts the fairness guarantees of the prdeads and workloads exhibiting spatial locality.
portional share /0 scheduler. Figure 2(c) shows the pro- One way to increase the batch size is to increase the
portional share fairness index at a 1 second granularitpatch size of all applications in a proportionate manner
for the same experiment. It shows that higher concurfor every round. This, however, leads to an increase in
rency also leads to substantial loss of fairness, l’eSU|tbatching even for applications that may not necessarily
ing in each application receiving substantially different benefit from it. To verify this we ran 3 different work-
throughputs from their assigned weights. We notice thatoad mixes, RRR, RLR, and LLL. Here L means a work-
the fairness starts decreasing@at 8, and becomes sim- |oad with high locality. Figure 3(a) shows the overall
ilar to the fairness of a standard throughput maximiz-|/O throughput achieved from the modified DRR sched-
ing scheduler as the concurrency bound approaches fgler as the batch size is varigdbservation: Workloads
D = 20. The modified DRR behaves like a pass throughwith high locality benefit substantially from the variable

scheduler at this point and loses all its ability to reg-batch sizes and random workloads are almost unaffected
ulate the throughput proportions of individual applica- by the batch size parameter.

tions. Observation: Random workloads benefit more  gjce all workloads do not benefit from a higher batch
from the higher concurrency in comparison to sequen-jze, we would like to be able to have different batch
tial workloads. sizes based on the locality of the workload. We modi-
fied DRR to assign each application a number of tokens
. . . based on its batch size. Clearly, this can conflict with
4.2 Variable Size Batching the assigned weight of the application; to balance this,
The other factor that impacts the 1/0 efficiency is the applications with modified number of tokens should not
handling of spatial locality. Most storage systems im-receive any tokens for a number of rounds so as to pre-
plement some form of prefetching for sequential work-serve the overall proportions. We do this by skipping
loads which trades off additional transfer time with po- one or more rounds for these applications. The number
tential savings from fewer mechanical seeks. An 1/O ef-of rounds to be skipped can be easily computed. For
ficient proportional share scheduler also needs to handlexample, consider 3 applications with weights in ratio
sequential workloads differently to take advantage of thel:2:3. Let the batch sizes be 128, 64 and 16 for applica-
locality. tions 1, 2 and 3 respectively. Now, based on the weights
Our second modification to the DRR scheduler is to@nd batch sizes, application 1 will get a quantum of 128
introduce variable size batching so that highly sequengvery 24 rounds, application 2 will get a quantum of 64
tial workloads and large prefetches can be supported fogvery 6 rounds and application 3 will get a quantum of
efficient proportional sharing. We introducéatch size 16 every round. Fractional allocations were not needed
parametefS, which refers to the number of 10s that are in this example, but they can also be handled in a similar
scheduled from an application in one round of DRR.Manner.
This parameter can be different for each workload de- To test that variable batch size indeed helps in im-
pending on the degree of spatial locality present; weproving efficiency, we experimented with 2 workloads,



one random and other sequential. Here, we varied the Adapting concurrency: As discussed in section 4,
batch size of the sequential workload from 1 to 256. Fig-the efficiency of the storage server generally increases
ure 3(b) shows the overall I/O efficiency with the vari- as the concurrency of the server is increased; however,
able batch sizes. We observe that for small batch size®o large an output queue may lead to a loss in fairness.
the performance is lower (64 % of stand-alone through-The length of the output queue required to maintain pro-
put). However, for a batch size of 128, we get the desiregortional service depends not only on the weights of the
efficiency (close to 100% of stand-alone throughput) andapplications but also on the number of pending requests.
the overall throughput of the workloads is 1155 and 80For example, consider two closed applications with 16
IOPS which is very close to half the stand alone perfor-IOs pending at all times and weights in the ratio 1:4.
mance (2380 and 160 IOPS). Now, in the output queue of lengh, we should have

However, the efficiency increase doesn’t come for freeD/5 requests frora; and 40 /5 requests from,. When
— it adversely affect the fairness guarantees of the DR is larger than 20, all 16 pending requestsapfare in
algorithm. In effect, the assigned weights can be enthe output queue, and it does not have any more requests
forced by the modified DRR scheduler at a larger timet0 send; the remaining slots in the queue may be oc-
granularity. When the batch of 1/Os are issued from acupied by pending requests fromp (which still has 12
workloada;, it gets ahead of others in terms of allocated Pending requests in the DRR queue) affecting the fair-
proportion of the shared system. As the DRR schedN€ss guarantees. This is because DRR can only guaran-
uler skips the workload; in the subsequent rounds, the tee proportional service so long as the applications are
assigned weights are reached but over a longer time irRacklogged —thatis, there are enough pending requests

terval. in each application queue to use up the tokens available
and fill the output queue. Thus, we need to adapt the
4.3 Parameter Adaptation length of the output queue based on the number of re-

quests pending from an application and its share.
We have discussed two techniques for balancing the ef-
ficiency and fairness provided by a storage server: vari-
able size batching and bounded concurrency. Variable
size batching requires a batch size per application that
depends on how sequential (or spatially local) it is, and
bounded concurrency requires a paramdrt6 limit
the number of outstanding scheduled requests. The best
values for all these parameters depend on the workload
characteristics and the load on the system. Since the re-

LT = 128K (locality threshold);

int runCount[K], runPos[K];

int current = 0;

Compute Locality()

/I'lf request address is not within threshold,
start new run;

6 reqLBN = logical block number of current

a s~ W N P

lationship between workload characteristics and the best 7 irfe?ﬁiitﬁos[currem] - reqLBN > LT) then
parameter values can be complex, and workloads and 8 current++:

system loads vary over time, it is impractical for an ad- 9 if (current == K) then

ministrator to provide the values for these parameters. 10 current=0

We implemented an automated, adaptive method to set 11 end

the per-application variable batch sizes and the concur- 12 runCountfcurrent] = 0;

rency parameters. 13 end

14 runCount[current]++;
15 runPos[current] = reqLBN;
16 Add request to corresponding DRR queue;

Adapting batch sizes: As we showed in section 4.2,
increasing the batch size for application workloads that
are sequential or spatially local improves the efficiency
of the storage server by reducing the disk seeks, at some
cost to the fairness. Ideally, one would set the batch size _
large enough to capture the sequentiality of each work- 1: Calculating average run length
load, but no larger. We do this by periodically setting
the batch size of the application to its average reoemt
length (up to a maximum value). A run is a maximal
sequence of requests from a workload that are within a
threshold distance of the previous request — we used a

17 Periodically: (every 1 second)
18 Lj = average of non-zero runCount[] entries;

On Request Arrival:
Compute Locality();
Enqueue request in application’s queue;
Dequeue request();

threshold distance of 128KB, which is tunable. Algo- On Request Completion:
rithm 1 shows the pseudo-code that tracks theKastn D=D-1;
lengths; the average recefitrun lengths used as batch Dequeue request();

sizel. 2: Adaptive DRR algorithm



1 DG;: deficit count of applicatio; active application receives the full service it is entitled
2 RB: number of requests pending in output queug O in each round, the algorithm guarantees proportional

Qb: service for all active applications. Finally, Algorithm 2
3 Ri: number of requests pending in application shows the overall adaptive DRR algorithm.

queueQ; .
4 curHead = index of current queue; 5 Analytical Bounds

5 Dequeue Request():

Increasing the concurrency and the per-application batch
6 for count« 1to N do

sizes for sequential or local workloads improves the effi-

7 i=curHead; . . . .
8 /i If inactive, be work conserving and go to ciency of the fair scheduler, l?ut at some cost in fairness,
next queue as we_have observed. In this sec'uon,. we present some
o if (R +R; == 0)then analytical bounds on how far the resulting scheduler can
10 curHead++: deviate from proportional service.
11 if (curHead == N)then Most fair schedulers such as WFQ [5], SFQ [8], Self-
12 curHead =0 Clocked [6] and DRR [18], guarantee that the differ-
13 continue; ence between the (weight-adjusted) amount of service
14/l If active and has request, send it obtained by any two backlogged applications in an in-
15 if (DCi > 1 AND R > 0) then terval is bounded. The bound is generally independent
16 DCi = DCi-1; of the length of the interval. During any time interval
7 R=R-1 [t1,t2], where two flows (applicationd) andg are back-

18 PR=R+1,;

1 D=D+1: logged for the entire interval, the difference in aggregate

cost of requests completed férandg, is given by:

20 Send request frora;;

21 return; max max

22 [/ If active with no request, return Siltute) St to) < o + il (3)

23 if (B >0ANDR == 0)then Wt Wy Wt Wy

;g Curézgjérli/; Do not send more; wherec"®is the maximum cost of a request from flow

26 if (curHead == N)then a; [6, 8]. Cost is any specified positive function of the

27 curHead = 0 requests; for example, if the cost of each request is one,

28 // Deficit count is zero, replenish and startover | the aggregate cost is the number of requests. A similar

29 for i — 1to N do (but weaker) bound has been shown for the basic DRR

30 if (g deserves quantunthen algorithm [18].

31 DCi =G; When the server is allowed to have multiple outstand-

32 goto line 6; ing requests simultaneously, the bound is larger. For ex-
3: DRR request dispatching. ample, Jin et al. [12] show that in SFQ(D), where the

server has up t® outstanding requests, the bound in
Eqg. 3 is multiplied byD+1). In our case, as shown be-
low, the bound grows as bofhand the maximum value
of the batch sizes.

A method to control the concurrency to maximize ef-
ficiency while maintaining fairness is shown in Algo-
rithm 3. In order to maximize the efficiency of the server,

we allow the concurrency to increase so long as each acfheorem 1. During any time intervalt;,t,], where two
tive application that has tokens for a round has pendingpplications aand g are backlogged, the difference in
I0s in its DRR queue. If the current applicatiapnhas  \eight-adjusted amount of work completed by DRR us-

no pending requests in the DRR queue we stop sendng corresponding batch-sizes, G5, and concurrency
ing requests (thereby decreasing concurrency as requestsis bounded by:

complete at the server) until one of two events occurs:

eithera; sends a new request (perhaps triggered by the |S(ti,tz) ~ Sj(ts,t2) - 2(9+ Gj +D 1 1
completion of an earlier request) or it completes all its Wi Wj TOW W, Wi W
requests in the output queue. In the first case, we con-

tinue addinga;’s requests to the output queue. In the

second case, we declagnactive and continue serving

requests from the next DRR queue. In addition, when an Essentially, the theorem says that the bound on unfair-
application runs out of tokens, the round continues withness increases proportionally with a linear combination
the next DRR queue. An application is considered activeof the concurrency bound and the batch size parame-
if it has at least one request in the scheduler input queudersG; andG;. We present a proof for this theorem in
output queue, or outstanding at the server. Since everthe Appendix.




Parameters ri ro r3 &
Parameters | g r r3 & D,[G1,G,G3] | (MB/s)| (MB/s)| (MB/s)
D.[G1,G2.G3] | (MB/s)| (MB/s)| (MBJs) 1[13,5] 127 | 378 |63 |039
1,[1,3,5] 052 | 155 |259 | 053 8,[1,3,5] 161 | 483 | 804 | 049
8,[1,3,5] 084 | 251 |418 | 086 16,[1,3,5] 212 | 634 | 1043 | 0.64
16,[1,3,5] 0.97 | 291 | 484 | 099 8,[8,24,40] 226 | 676 | 11.3 | 0.69
S [8.2440] 0ss 1353 255 1086 8,[16,48,80] | 2.46 | 7.33 | 12.33 | 0.75
8[16.4680] 084 | 249 [410 [ 085 8,[32,96,160] | 2.78 | 251 | 13.96 | 0.85
83296160 085 251 422 | 0.86 8,[16,96,240] | 2.91 | 8.69 | 14.62 | 0.89

8,[16,128,320] | 2.98 | 8.81 | 14.95 | 0.91

(a) Workload RRR: stand alone throughputis R:8.8MB/s  (bykMmd RLL: stand alone throughputs are: R:8.8MB/s, L:8M

Parameters ry ro r3 & Parameters 2 ) rs &
D,[G1,G2.Gg] | (MB/s)| (MBIs)| (MB/s) D,[G1, Gy, Gg] (MB/s)| (MB/s)| (MB/s)
1[1,35] 187 | 558 | 949 |04 1[1,35] 109 | 326 |543 | 013
8,[1,3,5] 174 | 516 |876 | 037 8, [1,3,5] 228 | 6.79 | 11.32 | 0.26
16,[1,3,5] 245 | 732 | 124 | 053 16,[1,3,5] 322 | 961 | 1539 | 0.36
8,(8,24,40] 2.94 | 877 | 1491 | 0.64 8,[8,24,40] 503 | 15.05 | 25.06 | 0.58
8,[16,48,80] 3.62 10.79 | 18.44 | 0.78 8,[16,48,80] 5.92 17.71 | 29.63 | 0.68
8,[32,96,160] | 421 | 12.51 | 21.38 | 0.91 8.32.96.160] | 622 | 18.59 | 31.21 | 0.72
8,(16,96,240] | 4.11 | 12.24 | 20.92 | 0.89 8,[128,384,640] | 7.06 | 21.12 | 35.86 | 0.82
8,[16,128,320] | 4.69 | 14.08 | 23.83 | 1.02 8,[256,768,1280]| 8.03 | 24.02 | 40.79 | 0.94
(c) Workload LLL: stand alone throughputis L:41.85MB/s. ) Workload SSS: stand alone throughputis S:77.8MB/s

Table 2: Measured throughput and efficiency for variousragttof concurrency bound and batch size.

6 Experimental Evaluation vices (entries in /dev), which are backed up by a block

In this section, we evaluate our mechanisms for improv-device that can be a single disk, a RAID device or a
ing the 1/ efficiency of proportional share schedulers,0gical volume. Different applications access different
We used a variety of synthetic workloads and trace repfseudo deV|c_es. _Thls allows us to classn‘y_requests from
play workloads in our experiments. Our results are basediTferent applications, and we can set weights for each

on the modified DRR scheduler, but our techniques ard@seudo device. Our module intercepts the requests made

general enough that they can be applied to other propoF—O the pseudo devices and passes them to the lower level

tional share schedulers. Anticipatory scheduler in Linux based on the DRR al-

Overall, we highlight two main points in our evalua- gorithm with our modifications. Anticipatory scheduler
tion. First' we show how the two parameters we intro-then dispatches these requests based on its own seek

duced, bounded concurrency, and the variable batch siz8linimization algorithm, we don’t make any modifica-
can be adjusted to get high efficiency without a signifi-1oNnS 1O It.

cant degradation in fairness. We don’t use adaptation, We use a variety of synthetic micro-benchmarks and
but instead use fixed values of these parameters to studyace-replay workloads in our experiments. We experi-
their affect. Since our approach trades off short termmented with three synthetic workloads and four differ-
fairness in order to get higher I/O efficiency, we evalu-ent workload mixes. The random worklo& repre-
ate both fairness and efficiency. Second, we show hovgents an application with 16 pending 10s of 32KB each
these parameters can be adapted for dynamically changhstributed randomly over the volume. The throughput
ing workloads. We also compare our adaptive DRRof this random workload when running in isolation is
mechanism with other existing algorithms such as an8.8MB/s (281 IOPS). The spatially local workload L

ticipatory scheduler, base DRR and SFQ(D) [12]. does 32K sized |Os separated by 16K each. This highly
. | local application has throughput, running in isolation,
6.1 Experimental Setup of 41.85 MB/s (1339 IOPS). The sequential workload

Our experimental setup consists of a Linux kernel mod-sends 32K sized sequential I0s and has overall through-
ule that implements our mechanisms in a modified DRRput of 77.8 MB/s (2490 IOPS) in isolation. We con-
scheduler. The module creates a bunch of pseudo desider 4 different mixes representing different number of



random, local, and sequential workloads, defined as as 2000
RRR, LLL, SSS and RLL. Here RLL represents one ran- 1800
dom and two local workloads. The weights are assigned 1600

in ratio 1:3:5in all cases. i‘z‘zz
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a. Figure 6: Cumulative 10s of workload with high local-

02| ity for various values of parameters, D and G. The plot

L fonm ™ shows the cumulative 10s from 1 to 3 sec. This indicates
% 2 4 6 8 1 12 1 that the fairness granularity increases with these param-

Figure 4: Fairness ind€®® ®ver time, for one second €ters.

measurementintervals. For each workload combination,

the parameter values with highest efficiency were used.and their performance improves as we increase the batch
size. (3) It is possible to get high efficiency with small
values of D. This is important, since we have already

1.4

T Sss’—— shown that setting D to a large value causes fairness to
= ] LLL =@ g 9

5 2 RRR - | deteriorate significantly.

a 3 ] Figure 4 shows the corresponding fairness for one
g o8 o ] second intervals using the parameter settings that pro-
£ o6 ] vides the highest I/O efficiency for each workload (i.e.,

7 04r o 1 the rows in bold face). Though the fairness is below

Q ©-9, .

£ o2 ® LN ] 0.1 for most workloads at one second granularity, there
. ks, 22 SRS =222eed% are cases where the parameter settings corresponding to

0
0 02040608 1 12141618 2 the highest 1/O efficiency lead to poor fairness (e.g., up

Figure 5: 90" percelfil¢“Vaftfe of Faimess indeX (5 0 4 for the SSS workload). We note that the base-

for various measurement intervals over which fairesgine pRR scheduler has perfect fairness becasue it uses
is computed. For each workload set, the parameter cony _ g — 1.

bination with the best efficiency is used.
6.3 Fairness Granularity

6.2 1/0O Efficiency We have shown earlier that the fairness indéxlepends

on the time interval over which it is computed. Also
In section 4, we showed the impact of individual pa-the analysis shows that the worst case fairness bound in-
rameters on fairness and 1/0 efficiency based on microcreases with increase in parameter valDeendG, and
benchmarks. In this section, we look at the combinedso does the fairness granularity. In this section we show
effect of all the parameters. Our goal is to show thathow the value of# changes with respect to the time
we can adjust these parameters to obtain high 1/O efinterval over which it is computed.
ficiency. Table 2(a),(b),(c) and (d) show the measured For each of the workload mixes RRR, LLL, and SSS,
throughput and efficiency metrics for different parame-we computed the fairness index values as a function of
ter values, of workload mixes RRR, RLL, LLL and SSS the measurement time intervtal That is, we computed
respectively. These results show that the baseline DRRZ (0,t), .Z (t,2t), .7 (2t,3t), .. .. Figure 5 shows the 30
scheduler (wher® = 1 andG = 1) does indeed exhibit percentile of this set for values tfanging from 100ms
poor I/O efficiency, between 0.13 (for the SSS workload)to 2000ms. For each workload mix, we used the param-
and 0.53 (for the RRR workload). Our mechanisms im-eter combination that gave the best efficienBy= 16
prove /O efficiency to the levels above 90%, improving and small values of batch size for RRR, dbd- 8 and
the performance of the baseline DRR scheduler by a fadarge values of batch size for the LLL and SSS work-
tor of two to seven for different workload mixes. Our load mixes. The RRR workload has good fairnegs
results indicate the following: (1) The random workload (< 0.1) for measurement intervals of 300ms or higher,
mix (RRR) is unaffected by batching parameters and itsvhereas the other workloads require 1 second or more
efficiency is solely dependent on the bounded concurto achieve low fairness values. While the fairness gen-
rency (D). (2) Batching helps workloads with locality erally improves with higher measurement intervals, the
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Figure 7: Efficiency metri¢& with various time intervals over which fairness is very gged0.1) for three different
workload mixes.

changes are not monotonic. For the SSS workload, theoints below. In these plots, the ideal scheduler would
algorithm gains efficiency by allocating each workload abe in the top left-hand corner — high efficiency com-
large batch in one round, and then allocating no servicéined with a low fairness granularity. For the random
to it for several rounds. An interaction between the highworkload mix (RRR), the best combination of efficiency
batch size and the measurement interval cause a bump and fairness is achieved at a low fairness granularity
the fairness graph, since one measurement interval ma§800ms or less); the corresponding parameter settings
have more rounds with large batches allocated than thare D=16 and G=[1,3,5] in all configurations. Higher
next. As such, the proportion of service received by abatch sizes for the RRR workload mix increase the fair-
workload may be too high in one measurement intervalness granularity without any improvement in efficiency.
and too low in the next. However, the effect declines asFor the workloads with significant locality or sequen-
the measurement interval grows larger. Overall, the fairdiality, the efficiency increases with the fairness gran-
ness granularity is larger for the SSS case than for thelarity. In the case of the LLL workload mix, 90%
other workload mixes. efficiency is achieved at a fairness granularity of 800—
These results are also in agreement with our analysi€§00ms; this corresponds to the parameter seflirg8,
which shows that the worst case fairness bound increasés = (64,192 320 in all three configurations. The third
in proportion to sum of the queue length and batchingworkload mix, SSS, is the most difficult test of the
parameters. To illustrate this further, we experimentedscheduler, because it is hard to retain efficiency when
with two workloads, one random and one local, with mixing sequential workloads. In this case, 90% effi-
weights set in the ratio 1:2. Figure 6 shows the cumula<ciency is achieved at a fairness granularity of 3900ms
tive IOs completed for the local workload with increas- for the single disk configuration, using the parameter set-
ing values of the two scheduler parameters. It showsing D =8, G = [256,768 1280. On the striped volume
that higher values for parameter settings result in biggeconfigurations, 90% efficiency is achieved for the SSS
steps and bursts. Thus, if we measure throughput overvorkload mix at a fairness granularity of 700—-1100ms
short periods, it is quite variable and the fairness can b€Figures 7(b) and 7(c))Overall, we conclude that fair-
poor. If fairness is measured over longer periods, theiess granularity can be traded for efficiency in a propor-
throughput smooths out, and the fairness is good. tional share 1/0 scheduler.

6.4 Efficiency and Fairness Granularity 6.5 Adapting parameters to workloads

In this section we look at the relationship betwdeir-  We have so far presented results with fixed values of the
ness granularityandefficiency For this experiment, we concurrency and batch-size parameters. We now evalu-
assume that the user needs very good fairness, say, a faate the adaptive DRR algorithm presented in Section 4.3.
ness index# less than 0.1. Figure 7 shows how the effi- In our first experiment, we use a mixture of three
ciency of the scheduler varies with the fairness granularworkloads, initially all random, and let one of the work-
ity. As before, the workload weights are 1:3:5. Eachloads increase its run length every 10 seconds, turning
point represents one parameter setting for one workinto a more sequential workload. Ideally, as the third
load mix in one storage configuration, and the efficiencyworkload gets more sequential, its batch size needs to
is plotted against the fairness granularitf0.1). We  be adjusted to reflect this change. The weights of the
evaluated three different back-end devices - one diskworkloads are assigned in ratio 1:1:4, and each work-
two and four disk striped LVMs. The parameter set-load issues 10s of 32KB on a 2-disk stripe. Figure 8(a)
tings are not shown (to avoid cluttering the figures),shows the overall throughput with the adaptive DRR al-
but we note the parameter settings for some interestingorithm increases over time as one of the workloads be-
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Figure 9: Dynamically adapting queue length as one of thé&lwads decreases its concurrency from 128 to 4 at 10
seconds granularity.

comes more sequential. We also plot the efficiency andnatically adjusts the number of requests at the back-end
fairness (with 1 second measurement intervals) for theueue, as shown in Figure 9(b). As the pending count
same experiment in Figure 8(b) and the batch size of théor the sequential workload decreases, so does the av-
workload which changes its run length during the expererage queue length. However, the sequential workload
iment in Figure 8(c). These results show that the adapgets a large batch of size 256 (because it is sequential)
tive DRR is able to keep high I/O efficiency and tradesand then misses its turn for the next 64 rounds (because
off short term fairness by letting the fairness index to in-its weight is 4). During those rounds, the queue size
crease up to 0.1. It achieves this by varying the batchs high because of the backlog from the random work-
size for the changing workload as it increases its runioads. The large back-end queue allows for good seek-
length as shown in Figure 8. We also sampled the queueptimization and high efficiency with random requests.
size at the storage system every second. Both the medfigure 9(a) shows the efficiency and fairness for the du-
and median queue length was 24. ration of the experiment. The overall efficiency is close
to 90% and fairness measured over one second intervals

In our second experiment, we again consider a MIX3s around 0.1, which indicates that the adaptive algo-

ture of three workloads, two random and one sequential ., ., successfully manages the back-end queue depth

and letthe sequentia_l workload vary its concurrency (theto obtain good efficiency and fairness despite the rapidly
number of requests it has outstanding) from 128 to 4 a[’:hanging workload

10 second intervals. The random workloads each have
a fixed concurrency of 32 and issue 32KB 10s. Since6_6 Comparison With Other Approaches

the sequentiality characteristics of the workloads do not

vary, the algorithm keeps the batch sizes for the work4n this section, we compare the performance of our adap-
loads unchanged throughout — 256 for the sequentialive DRR mechanism with some of the well known algo-
workload and 1 for the random workload, as shown inrithms, that are used in practice and are proposed in lit-
Figure 9(c). The overall concurrency — the total num- erature. We compare with three other algorithms: Antic-
ber of outstanding requests — decreases from 196 to 6patory scheduler, SFQ(D) and base DRR. Anticipatory
over a period of 150 seconds. To adapt to the changscheduler is available in Linux distribution and other two
ing concurrency of the workload, the algorithm auto- we implemented as modules. First we use the workload
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Figure 11: Comparison of adaptive DRR with anticipatoryQQ®P) and base DRR schedulers.

mix of three workloads, which are all random and we 6.7 Postmark Experiments

make one of them increase the run length every 10 sec-

onds, going from 1 to 1024. The weights are setto 1:1:46.8 Experiments with Traces

and all workloads are doing 16 concurrent IOs of 32KB ) ] . )

each. Figure 11a and 11b show the efficiency and fairln this section, we experiment with real world traces
ness index for various schedulers. Note that adaptivé® evaluate our adaptive scheduler. We used three rep-
DRR is very close to anticiapatory scheduler in terms off€Sentative traces for mail servepenmal), data base
efficiency. Other mechanisms such as base DRR an(fPc9, and file systemHarp) workloads. We replayed
SFQ(D) show poor efficiency and that gets worse adhese traces on a 4-disk Ioglcal volume [1]. Figure 10(a)
batch size increases. This is mainly because they cang10Ws the throughput obtained by traces when they are
adapt to the change in batch size. However, these mech&{" Separately, in isolation. Since traces are open work-
nisms provide very good faimess. Note that anticipatory©2ds, the rate of request completion is also bounded by
scheduler provides very poor fairess, where as adaptiv@e actual ar_nvals in the trace. We observe that on aver-
DRR is able to provide very good fairess close to the?9€ openmail, tpcc and harp get 540, 1470 and 2800 10s

SFQ(D) and base DRR, even for a batch size of 1024. respectively. Then we ran these traces using DRR with
weights in ratio 1:3:5. Figure 10(b) shows the through-

put while running all three simultaneously. Note that in-
Next we experimented with variable concurrencydividual 10 throughputs are lower than those obtained in
workload, where third workload changes its concurrencyisolation because system cannot provide the full desired
from 128 to 4 by periodically decreasing the number ofservice to all of them. Figure 10(c) shows the overall ef-
outstanding IOs every 10 seconds. Figure 11c and 11ficiency of the system (this calculation is done assuming
show the efficiency and fairness index for various scheda steady state average throughputin isolation). The effi-
ulers. Again note that adaptive DRR is close to antici-ciency is around 1.4 due to two reasons: (1) combining
apatory scheduler in terms of efficiency. However an-multiple traces leads to an increase in system utilization
ticipatory scheduler provides very poor fairness, whereas the overall arrival rate increases, and (2) combining
as adaptive DRR is able to provide very good fairnesswvorkloads causes the size of the 1/0 queues to increase,
close to the SFQ(D) and base DRRhese results show providing more opportunities for the lower level sched-
that adaptive DRR is able to provide good fairness alongulers to improve the efficiency. These results show that
with providing high efficiency even in presence of work-our adaptive DRR algorithm handles the substantial vari-
load changes. ation in workload characteristics exhibited by real world



workloads.

[10]

7 Conclusions
In this paper we studied the trade-off between fairness

and efficiency in a shared storage server. We showeg_u

how this trade-off can be controlled using two parame-
ters: variable size batching and the depth of the sched-
uler’'s output queue. We highlight the important char-
acteristics of each of these parameters and show that

they can be tuned to trade off fairness granularity —[12

short term fairness — with efficiency. We then present

a self-tuning algorithm that sets the values of these two
parameters based on dynamic workload characteristics.
We validated our approach by an extensive experimen-

tal study using both synthetic micro-benchmarks and acp3

tual traces. The approach is also backed up by a formal
framework and analysis that supports the experimental

results. Experimental results using a variety of work-
load mixes indicate that an 1/O efficiency of over 90%

[14]

is achievable by allowing the scheduler to deviate from
proportional service for a few seconds at a time.
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8 Appendix intervala; will get at least 4 i, = 5) allocations. The

8.1 Analysis numbersrk andrr_y d(_epend on the batch size and weights
_ o of different applications.

Theorem 2. During any time intervalty,to], where two - The length of time intervalf,t,] is at leas{m — 1)1

applications aand g are backlogged, the difference in  Consider the other applicati@y: during interval fy, o],

weight-adjusted amount of work completed by DRR usit will receive at leastm; quantum allocations given by:
ing corresponding batch-sizes,G&s;j, and concurrency

D is bounded by: mj = [(m —1)7/1]] ©)
Sj(tg,t i Gy i 3 )
S(t,t)  Si(tytz) < 2(9+ Gj +D(i+ i) iased on the computation & and 1;, we also know
Wi Wi W W, wWow; at
G*xtp W
= — 10
Gj*1i W (10)

Proof. Consider an interval{,t;] where applicatiors;  This is because the overall allocation per round must be

getsm non-zero quantum allocations. Each quantumin ratio of the weights. Substituting; andG; /w; from
allocation corresponds to batch sizeof &. The total  the equations above, we get:

amount of service obtained lay can be written as:
miGj/wj > Gj((m —1)t/1j—1)/w;  (11)

Si(t1,t2) = mGi + DCi(ta) +di(t2) — DCi(tz) — di (tz()4) = Gr((m-Du/t-1)/(wn) (12
Here,DCi(t) denotes the number of tokeashas at time = Gm/w—G/w—Gr/(wn)  (13)
t andd;(t) denotes the number of outstanding scheduled = Gm/wi—Gi/w —Gj/w; (14)
(but not completed) requests fraanat timet. o ] ] _

Noting that 0< DG,(t) < G; and 0< di(t) <D, we  ( SuPstiling n the difference computation, we get
can upper bound the expression $as: e T S e e ttwt e
S(ty,t) < MG +G+D (5) By grouping the terms for G and D we get:
B ‘S(tlth) _Sj(t1=t2) < 2(9+&)+D(l+i) O
Similarly, the lower bound is: Wi Wi | =T W W Wi W
S(ty,t2) >mGi —Gi - D 6) Scheduling ofy
Considering the upper and lower bounds for applica- m =10 =2
. . t t2
tionsa; anda; respectively, we get: 1 ¢ ¢ ¢ ¢
| | | | | |
S(tLtz) mGi \ \ \ + rrrrrrr + \ \ \
ALV gt - W .
WS w +Gi/wi +D/wj @) m=5 -4
Scheduling of;

—Gj/w; —D/w; 8) Rounds —————

Figure 12: lllustration for proof

Sj(t1,t2) S mJ_GJ
Wi Wi
Hence the difference is bounded by:
%@ — %“2) < ”“TG' + W — mv'V—GJ — % Essentially, the theorem says that the bound on unfair-
' : ' ' : : ness increases proportionally with a linear combination
Let 1, and 7; be the number of rounds between suc-of the concurrency bound and the batch size parame-
cessive quantum allocations to applicatiananda; re-  tersG; andG;.
spectively. These values will non-zero because if an ap- . . . .
plication has high batch siZ&, then it may have to skip 8.2 Time Slicing at Disk
a few rounds in order to maintain proportionate fairnesdn this section, we take a closer look at the alternative ap-
over along run. Figure 12 illustrates the parameters usegdroach of time slicing at the disk and discuss some of the
in proof. Here applicatiom; gets its quantum allocation fundamentalissues with that approach. We implemented
G; every alternate round. Heneg= 2. Also withina a DRR-timeslice algorithm that does time multiplexing
time intervallty, t2], & may getm; = 10 such allocations. at a fine granularity. The length of an application’s time
Similarly applicationa; gets its quantum allocation of slices is proportional to the weight of the application. If
G;j every fourth round, hencg =4. Also in the same an application has no more requests to send, it will wait
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Figure 13: Comparison of time slicing and proportional
share scheduling.

if the lower level queue has at least one request pending
(D > 1), otherwise the DRR-timeslice will move on to
the next application’s time slice. Thus, we chose to end
the time slice as soon as an application becomes inac-
tive; we made this choice to make the scheduler work-
conserving.

In this experiment, we used four random workloads,
each keeping 8 requests pending, with equal weights.
The back-end queue depth is 16. We set the time-slice
to be 100ms for each workload. Figure 13 shows the
cumulative distribution of latency for one of the work-
loads and the average total throughput. This shows that
almost 60% of I0s have a small latency of around 50ms
and the remaining have a latency of more than 300ms.
This number is dependent on the workloads (four in this
case); with a larger number of workloads, the maxi-
mum latency would be higher. By contrast, the DRR
algorithm has less jitter. DRR also has better overall
throughput. DRR obtains around 320 10s/s, whereas
DRR-timeslice obtains only around 215 I0s/s. In the
case of time slicing we can only use the concurrency
from a single workload (8 in our case), whereas the DRR
algorithm maintains 16 10s in the back-end queue. Thus,
DRR-timeslice loses the improvements in efficiency as-
sociated with higher concurrency (better seek optimiza-
tions and higher parallelism). A good time-slicing mech-
anism should figure out when to isolate and merge the
IO workloads, instead of doing strict time multiplexing

at all times.



