
Rev. 0.3 8/06 Copyright © 2006 by Silicon Laboratories AN271

AN271

Si8250 REAL-TIME KERNEL OVERVIEW

1. Introduction
The Si8250 is a fully-programmable digital power
controller/manager that is useful over a wide range of
end applications. Behavior of this controller is
determined by firmware; so, each end-system requires
an application program containing the control and
protection algorithms. Design of such an application
program could be a significant user development if
written from start-to-finish. The Si825xK2.0 (K2.0) is a
royalty-free application software kernel for the Si825x
family of digital power controllers that greatly reduces
application program development time, effort, and
engineering risk. The K2.0 installed kernel (Figure 1)
supports isolated and non-isolated Si8250-based
systems and includes verified algorithms that perform
analog data acquisition, system initialization, soft-start,
steady state regulation, fault detection/recovery,

network interface communications, and system
shutdown supporting function library and other
application-specific routines. The user needs only to
port this kernel to the end application and add
specialized (user-proprietary) source-code-level
functions. Porting the kernel involves editing the source
code files using the Application Builder tools included in
the Si8250DK development kit. It is also available for
download at www.silabs.com. These tools simplify
kernel porting through a series of graphical user
interfaces (although it is strongly recommended the
user have a background in C-Language programming).
The integrated development environment (included with
the tool set) allows the user to create and edit source-
level C-code.

Figure 1. Si825x System with K2.0 Installed

Si825x

KERNEL (K2.0) SMBus
Port

ADC0
Kernel Library

Processes

Kernel Process
States

Control Processor

System
Processor

DSP
Filter

Engine
ADC1

OCPREFDAC

Power Stages

DPWM

Output voltage feedback

Gate control

Analog
parameters

Network
Interface

Peripherals
UART,

Timers, etc.

External
DevicesI/O

I/O

VOUT

http://www.silabs.com
http://www.silabs.com
http://www.silabs.com
http://www.silabs.com

AN271

2 Rev. 0.3

This document is useful as both a tutorial and a reference. A system-level discussion is presented in the next
section, followed by a top-level kernel description and description of each kernel process state. "Appendix A—
Library Functions" on page 44 is a summary of kernel library functions, and "Appendix B—Header File" on page 50
is a description of the kernel set-up parameters contained in the header (.h) file.

Note: Throughout this document, the names of application software variables and program blocks are in italicized print. For
example: Kernel_Regulation_Process, mFilterProcess(TEMP), etc.

1.1. Differences from Kernel Version 1.0
K2.0 uses a cooperative architecture that readily accommodates the addition of user-proprietary software. All
user-added code can reside in a single file (main.c), simplifying code additions and system debug.
Synchronous design—All kernel processes are synchronized by a programmable hardware timer for
deterministic operation.
Optimized library functions make K2.0 source code easy to understand and simplify user code additions.
Added robustness—All code is non-blocking (no looping instructions) and is resistant to “infinite looping”
regardless of system status. Added safeguards ensure more robust system operation.
Newly-supported system functions—Efficiency optimization using dynamic dead time control, half-bridge input
node dc balance, VIN feed-forward, additional network interface commands, input and output current
measurement, dead time control for improved efficiency, and advanced nonlinear control algorithms for
improved transient response.
Fast, software-based ADC0 multiplexer and fault detection management (with software-filtered, 16-bit
variables) have been implemented for superior noise rejection and greater fault detection programmability via
the network interface.
K2.0 typically occupies approximately 20% less code space than V1.0 and executes up to 50% faster,
depending on system configuration. Many system applications will operate at a lower CPU clock frequency as a
result. K2.0 can compile to code sizes as small as 2 kB for systems without network interface and 10 kB for
systems with network interface.

AN271

Rev. 0.3 3

1.2. System States of a Typical Power Systems
Typical power system states and the corresponding support provided by K2.0 are summarized in Table 1. A state
diagram showing system operation is shown in Figure 2.

Table 1. Typical Power System States and K2.0 Support Summary

End System
Operating State

Summary of Functional Support Provided by K2.0

Initialization Initializes all Si825x hardware configuration registers: VDD monitor, MCU watchdog timer, on-
board oscillator, processor I/O port type and functions, 12-bit ADC, kernel scheduler (Timer2),
UART (for isolated applications), ENABLE input, REFDAC, communications watchdog timer,
DPWM timing set, DSP filter engine coefficients, CPU interrupts, peak current detector, and
hardware OCP. Kernel software parameter initialization clears internal status and control flags
and loads system parameters including protection parameters and system set points (e.g.,
VOUT).

Soft-Start Validates startup permissives: tests VIN thresholds for voltage above UVLO level, checks
internal and external enable states, tests for faults. Initiates soft-start; adjusts for pre-bias start
(if any), preloads software filters (ensures smooth departure from 0 V); ramps REFDAC on a
specified trajectory in closed-loop mode with protection enabled. Updates internal status and
control flags. Manages network interface communications.

Transition Manages transition from soft-start to steady-state regulation without VOUT overshoot. Updates
internal status and control flags.

Steady-State
Regulation

Executes protection fault tasks, manages network interface communications. Executes low-
bandwidth loop optimization: dead time control (improved efficiency), nonlinear control (faster
transient response), dc balance (half-bridge input node balance at VIN/2), VIN feed-forward.
Frame skipping at low loads. Updates internal status and control flags.

Fault Recovery Takes action in response to a detected fault. Possible responses include ignoring the fault,
correcting the fault, logging the fault, or proceeding to shutdown.

System Shut
Down

Shuts system off: soft or hard stop, asynchronous stop or stopping on a switching frame
boundary, all or some DPWM outputs in parking state (excluded outputs continue to follow
DPWM timing). Attempt restart for a specified number of tries, or latch off (requires input volt-
age to be cycled to restart).

AN271

4 Rev. 0.3

Figure 2. Top-Level System State Diagram

Referring to Figure 2 and assuming a Si825x-based power system with the K2.0 kernel application software
installed, the initialization state is entered immediately after the Si825x hardware reset. In this state, on-chip
hardware peripherals are configured, and all kernel software parameters (status flag states, variable values, etc.)
are initialized.

After initialization, system startup permissives are evaluated in the startup validation state. For example, input
voltage is measured, filtered to remove spurious noise, and compared to the under-voltage lockout threshold. The
enable input (if used) is checked for the ON state; fault status is evaluated, and so on. If all conditions are met,
kernel execution moves to the soft-start state where the output voltage is ramped to a target value under closed-
loop control and with system fault protection fully enabled.

When the output voltage is just below the minimum specified value at the end of soft-start, the kernel execution
enters the transition state. The transition state gently brings the output voltage into the regulation band without
overshoot, after which program execution vectors to the regulation state. During regulation, all previously activated
operations (network interface, fault detection/recovery, etc.) continue to be executed, and additional low-bandwidth
loop optimization operations (such as nonlinear control for faster transient response and dead time adjustment for
greater efficiency) are enabled. The regulation state is exited on a stop event, such as turning the ENABLE input
off or the presence of a fault condition. The next operating state is determined by the nature of the stop event and
the fault recovery rules for the system. In some cases, an automatic restart may be attempted, and in other cases,
the system is locked-out and requires input power to be cycled to restart the system.

Start-up
permissives

OK
Start-up

permissives
not satisfied

Regulate

Start-up Validation

Initialization

Fault Detection

Fault Recovery

Stop

Chip Reset

Transition

Power-on or HW/SW
reset

Initialization
complete

Restart failed or
lockout fault

recovery selected

Soft-start phase completed

Vout at target value

Power-off
event

Attempt
restart

Fault
detected

Restart

Reset
Complete

Fault detected

Isolated
comm fault

Lockout

Soft-Start

Disable
event

AN271

Rev. 0.3 5

2. Kernel Description
2.1. Structure
The K2.0 kernel is optimized for small size, fast execution, ease of user-modification, and robust operation. To
meet these goals, a cooperative programming structure based on a hierarchical state machine is used (Figure 3).

Figure 3. Kernel Software Structure

Low-level C-language functions (analogous to “subroutines” in Basic) are stored in the kernel library. These
functions perform elementary operations, such as testing bit states, filtering analog data, and so on. Each function
has a “fall-through” code architecture (also referred to as “non-blocking code”) that does not make use of
conditional “looping” code. As a result, each function executes quickly and without vulnerability to getting stuck in
an “infinite loop” when unforeseen circumstances occur. Combinations of library functions are connected with “glue
code” to form individual power system processes, such as the input voltage feed-forward process. Like the library
functions from which they are built, these base processes execute quickly, consume little code space, and exhibit
robust operation.

Functions and processes are used to create large-scale system code building blocks called kernel process states,
such as the Kernel_Regulation_State. The system operating states shown in Figure 2 are implemented by
sequentially executing one or more individual kernel process states. When invoked, each kernel process state
executes its task, then updates software status flags for future reference and specifies the next kernel process
state to be executed based upon data and results gathered in the current kernel process state.

Process Process

Kernel
Process State

Process

Kernel
Process State

LIBRARY (Compiled C Functions)

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

FU
N

C
TI

O
N

System State
(Figure 1)

AN271

6 Rev. 0.3

2.1.1. K2.0 File Organization

The K2.0 kernel file organization is shown in Figure 4. The “main.c” program is very simple; it initializes the kernel
and calls the kernel process (compiled from the kernel program file). The kernel executes and returns to main.c
where proprietary user-generated code functions may be placed. This code might include control of external
devices, such as fans, and displays or may contain special control or other proprietary algorithms. The process
repeats upon exit from any user code in Main.

Figure 4. Kernel File Organization

Each C-Language library function is contained in its own file (there are over 500 function files in the library).
Individual files ensure that each function is completely optimized with no unrelated code for the smallest program
memory footprint possible. Example library functions include the isolated communications packet processor,
individual filters for each ADC0 input, the ADC0 soft-sequencer, DPWM averaging filter, ADC1 error filter, and
others. Library functions may be called from any program making them usable in main.c, the kernel, or any other
project file.

A summary of the kernel process states and their functional descriptions appears in Table 2. Each kernel process
state is detailed in a later section of this document.

MAIN

Kernel Init

Run
Kernel_Process

User-added
code

Start

LIBRARY (~500 files)

PACKET PROCESSOR

ADC0 FILTERS

DPWM FILTER
ADC0 SOFT SEQUENCER

DATA STRUCTURE

ADC1 ERROR FILTER

KERNEL PROCESS

AN271

Rev. 0.3 7

Table 2. Kernel Process State Definitions

State Name Function Operations

Kernel_Process Dispatcher Passes program control to the appropriate process
when called. As each process completes execution,
it specifies the next process to be called based on its
own operating results.

Kernel_Init Chip HW
initialization

Initializes all of the hardware and software settings
onboard the Si8250 in preparation for startup.

Kernel_High_Level_Init Power converter
initialization

This process is essentially a “converter reset”. That
is, various power converter-specific functions and
parameters are initialized.

Kernel_Validation_Init_Process Initializes startup
variables

Prepares the system for “validation”, which is system
parameter testing to determine if it is permissible to
initiate soft-start.

Kernel_Validation_Process Determines if star-
tup is permissible

Tests system parameters to determine if it is permis-
sible to initiate soft-start.

Kernel_Soft_Start_Init_Process Soft-start
initialization

Prepares system for soft-start.

Kernel_Soft_Start_WarmUp_Process Manages startup
delay (tON).

This process provides an adjustable time delay prior
to the beginning of the soft-start ramp (tON) per net-
work interface specifications.

Kernel_Soft_Start_Process Executes soft-start Executes soft-start output voltage ramp.

Kernel_Regulation_Init_Process Initialization for
steady-state regula-

tion

This process prepares the system to enter steady-
state regulation.

Kernel_Transition_Process Completes soft-start
ramp without

overshoot

Gently completes transition of soft-start to nominal
steady-state output voltage setting without over-
shoot.

Kernel_Regulation_Process Manages steady-
state regulation

Performs steady-state regulation, control optimiza-
tion, and system maintenance.

Kernel_Stop_Init_Process Selects stop mode Performs a hard stop on fault; otherwise, vectors to
Kernel_Soft_Stop_Init for a soft-stop.

Kernal_Soft_Stop_Process Manages soft-stop Maintains a controlled, linear, declining output volt-
age ramp during converter turn-off.

Kernel_Disable_Process Halts power conver-
sion, decides next

operating state.

Terminates power system operation; checks for
faults, and updates status flags accordingly.

Kernel_Lockout_Process Manages back-
ground tasks during
converter shutdown

Maintains key system functions, such as monitoring
enable signals for change and servicing network
interface communications, while the system power
converter is shut down.

Kernel_Fault_Recovery_Init_Process Initializes fault
recovery process

Manages fault restart counters and fault flags.

AN271

8 Rev. 0.3

Table 3 shows the order in which kernel process states are executed. The kernel process states in the first column
typically move to the process states in the second column unless an “event” (interrupt) is present, in which case, a
switch is made to the process state listed in the last column on the right. For example, the Kernel_Process is
always followed by the Kernel_Init_Process.

Kernel_Fault_Recovery_Process Resolves faults. Tests for under/over voltage on VOUT, VIN, under/
over temperature, on-time fault, and overcurrent.
Directs execution to next kernel process state based
on fault type.

Kernel_State_Control_Process Directs program
execution to fault

recovery state
(attempt restart), or

to an off state.

Executes the fault action; for example, system shut-
down and/or process state change.

Kernel_Threshold_Process Tests for fault
thresholds.

Tests specified variable against stored warning and
fault thresholds. Updates appropriate status flags
accordingly.

Table 3. Process States

Kernel Process State Next Kernel Process State Event Next Kernel
Process State

Kernel_Process Kernel_Init
Kernel_Init Kernel_High_Level_Init

Kernel_High_Level_Init_Process Kernel_Validation_Init_Process
Kernel_Validation_Init_Process Kernel_Validation_Process

Kernel_Validation_Process Kernel_Soft_Start_Init_Process Isolated communi-
cations fault

Kernel_Lockout_Process

Kernel_Soft_Start_Init_Process Kernel_Soft_Start_WarmUp_Process
Kernel_Soft_Start_WarmUp_Process Kernel_State_Control_Process

Kernel_Soft_Start_Process Kernel_Regulation_Init_Process On-time fault Kernel_State_Control_
Process

Kernel_Regulation_Init_Process Kernel_Transition_Process
Kernel_Transition_Process Kernel_State_Control_Process
Kernel_Regulation_Process Kernel_State_Control_Process
Kernel_Stop_Init_Process Kernel_Disabled_Process Fault present Kernel_Fault_Recovery_

Init_Process
Kernal_Soft_Stop_Process Kernel_Disabled_Process
Kernel_Disabled_Process Kernel_Lockout_Process ENABLE input OFF

and not masked
Kernel_High_Level_Init

Isolated communi-
cation fault

Kernel_Lockout_Process

Kernel_Lockout_Process Kernel_Fault_Recovery_Init_Process ENABLE input OFF
and not masked

Kernel_Disabled_
Process

Isolated communi-
cation fault

Kernel_Lockout_Process

Kernel_Fault_Recovery_Init_Process Kernel_Fault_Recovery_Process

Table 2. Kernel Process State Definitions (Continued)

State Name Function Operations

AN271

Rev. 0.3 9

However, the Kernel_Validation_Process moves to the Kernel_Soft_Start_Init_Process unless an isolated
communications fault is present, in which case, execution moves to the Kernel_Lockout_Process. From this state
table, one can see that all events are initiated by a fault, and, as a result, program execution is vectored to either a
lockout, recovery, or stop process state.

All files contained in the K2.0 kernel are summarized in Table 4.

Kernel_Fault_Recovery_Process VOUT under/over
voltage fault

Kernel_Lockout_Process

VIN under/over
voltage fault

Over/under temper-
ature fault

On-time fault
Input over current

Fault condition
removed—enable

OFF and not
masked

Kernel_Stop_Init_
Process

Isolated communi-
cations fault

Kernel_Lockout_Process

Kernel_State_Control_Process If no events are present, return to
previous process.

Isolated communi-
cations fault

Kernel_Lockout_Process

Peak current event
(ICYC)

Kernel_Fault_Recovery_
Process

Input over current
fault

VIN under/over volt-
age fault

Over/under temper-
ature fault

VOUT under/over
voltage fault

Undervoltage lock-
out fault

Kernel_Stop_Init_Process

ENABLE input OFF
and not masked

Table 3. Process States (Continued)

Kernel Process State Next Kernel Process State Event Next Kernel
Process State

AN271

10 Rev. 0.3

Table 4. Si8250K2.0 Kernel Files

File Name File Type Description

DPSK_Balance.c Process Half bridge transformer dc balance algorithm.

DPSK_Balance.h Header file Header file for half bridge transformer dc balance.

DPSK_Deadtime.c Process Dead time (efficiency optimization) control.

DPSK_Deadtime.h Header file Header file for dead time (efficiency optimization) control.

DPSK_Forward.c Process VIN feed forward algorithm.

DPSK_Forward.h Header file Header file for VIN feed forward algorithm.

DPSK_kernel.c Kernel State
Process

Kernel state control processes.

DPSK_kernel.h Header file Header file for kernel state control processes.

DPSK_main.c Kernel Main Main.c program from which DPSK_kernel.c is called.

DPSK_Setup.h Header file Kernel configuration file for DPSK_kernel.c

DPSK_Transient.c Process Nonlinear control algorithm for load and unload output voltage tran-
sients.

DPSK_Transient.h Header file Header file for nonlinear control algorithm.

PMB_Cmds.c Network Interface
Support

Network interface command interpreter.

PMB_Drv.c Network Interface
Support

Network interface low-level SMBus driver.

PMB_Drv.h Header file Header file for network interface low-level SMBus driver.

PMB_Mem.c Network Interface
Support

Network interface memory manager.

PMB_Mem.h Header file Header file for network interface memory manager.

PMBus.c Network Interface
Support

Network interface process (manages command interpreter, memory
manager, and SMBus driver).

PMBus.h Header file Header file for network interface process.

PMBus_setup.h Header file Header file for network interface process.

Si8250.h Header file Header file for Si8250 digital power controller.

Silabs_power.h Header file Header file for library functions.

Silabs_power.lib Library Library file (contains over 500 individual function files).

AN271

Rev. 0.3 11

3. Porting the K2.0 Kernel to the End Application
Porting the kernel to the end application requires the following operations (all tools are included in Si8250DK
development kit and are available for download at www.silabs.com):

1. Loop compensator design using the Compensator tool (located in the Application Builder).
2. Switch timing design using the Timing Editor tool (located in the Application Builder).
3. System management processor configuration using the System Wizard tool (located in the Application Builder).
4. Add kernel code for user-specific system functions using the IDE editor.
5. Compile and download the code into the Si8250 using the IDE editor and C-compiler (Note: full compiler

version is required for object code files larger than 4 kB).
6. Debug the system using the IDE Debugger; modify code as needed, and iterate between Steps 5 and 6 until the

system is debugged.

3.1. Compensator Design
The buck regulator compensation design tool is useful for isolated and non-isolated buck converters including
single and multi-phase POLs, half-bridge, full bridge, and other buck configurations. System parameter values are
entered into the appropriate fields along with the desired pole/zero frequencies. The compensator tool then
generates frequency response curves for the system, controller, and plant while generating the required DSP Filter
Engine coefficients and writing them into the source code. See “AN259: Designing with the Si825x Family of Digital
Power Controllers” for more details on using this and other tools referenced in this document.

3.2. Timing Design
The timing editor tool automatically generates timing initialization code for the Si8250 based on the user’s
graphical input. The user specifies the switching cycle length and then draws the required timing, specifying the
interphase and phase-to-phase timing relationships. A simulation function allows the user to quickly verify
operation. Timing parameters are automatically generated and written to the source code upon exit from this tool.

3.3. System Processor Configuration
The system configuration wizard tool allows the user to select and configure peripherals using drop-down lists and
check boxes. Initialization code is automatically generated and written to the source file upon exit from this tool.

3.4. Adding Proprietary Code
Code is added by typing the C-language code into the editor. Be sure to maximize use of the kernel library
functions for maximum code efficiency and reliability.

Note: Adding new (unproven) code can complicate system debug. It is therefore recommended that new code added in this
step be initially disabled (commented out or bypassed) until the basic kernel functions have been verified. The propri-
etary code added in this step can then be enabled and debugged one segment at a time.

3.5. Compiling, Loading and Debugging Code
Compile and load the program using the C-compiler and debugger. Note that any object code file (machine code)
greater than 4 kB will require the full compiler version. Code is debugged using the real-time debugger contained in
the Silicon labs IDE. In cases where the source code is new, debugging may be an iterative process of finding code
bugs, modifying the code, and compiling and running the new code version until the system operates properly.

http://www.silabs.com
http://www.silabs.com

AN271

12 Rev. 0.3

4. Kernel Process State Descriptions
4.1. Kernel Process (Kernel_Process)
4.1.1. Description and Operation

This kernel process state passes program control to the appropriate kernel process state when called. As each
kernel process state completes execution, it specifies the next kernel process state to be called based on its own
internal operating results. For example, a given kernel process state may detect a fault and specify the next fault
recovery initialization process state to be executed by writing the appropriate process value to the variable,
UkernelState. Kernel_Process contains a switch instruction with multiple case statements, each associated with a
specific kernel process. Each case statement compares the value in UkernelState to its associated kernel process
state. Program execution is immediately vectored to the matching kernel process state.

Figure 5. Kernel_Process Flowchart

Switch
(uKernelState)

Kernel_Process

No

Yes
Kernel_Init?

No

Yes

No

Yes

No

Yes

No

Yes

Kernel_Soft_
Start_WarmUp_

Process?

Kernel_Soft_
Start_WarmUp_

Process?

Yes

Switch to
Kernel_Init

Switch to
Kernel_High_

Level_Init

Switch to
Kernel_Validation_

Init_Process

Switch to
Kernel_Validation_

Process

Switch to
Kernel_Soft_Start_

Init_Process

Switch to
Kernel_Soft_Start_
WarmUp_Process

No

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Kernel_Soft_
Start_WarmUp_

Process?

Kernel_Soft_
Start_WarmUp_

Process?

Kernel_Stop_
Init_Process?

Yes

Switch to
Kernel_Soft_Start

_Process

Switch to
Kernel_Transition_

Process

No

Kernel_Soft_
Start_WarmUp_

Process?

Kernel_Soft_
Start_WarmUp_

Process?

Yes

No

No

YesKernel_Fault_
Recovery_Init_

_Process

No

YesKernel_Fault_
Recovery_

Process

No

Yes Switch to
Kernel_Lockout_

Process

End of Process

Kernel_High_
Level_Init ?

Kernel_Validation
_Init_Process ?

Kernel_Validation
_Process ?

Kernel_Soft
_Start_Init_
Process ?

Kernel_Soft_
Start_WarmUp_

Process?

Kernel_Soft_
Start_Process

Kernel_
Regulation_Init ?

Kernel_
Transition_
Process ?

Kernel_
Regulation_
Process ?

Kernel_Disabled
_Process ?

Kernel_Soft_
Stop

_Process?

Switch to
Kernel_Regulation_

Init

Switch to
Kernel_Regulation

_Process

Switch to
Kernel_Disabled

_Process

Switch to
Kernel_Stop_Init

_Process

Switch to
Kernel_Soft_Stop

_Process

Kernel_Lockout_
Process

Switch to
Kernel_Fault_

Recovery_Process

Switch to
Kernel_Fault_
Recovery_Init_

Process

AN271

Rev. 0.3 13

4.2. Kernel Initialization (Kernel_Init)
4.2.1. Description and Operation

This kernel process state initializes all of the hardware and software settings onboard the Si825x in preparation for
startup. This is accomplished by retrieving stored constants in Flash memory and writing them to the appropriate
special function register (SFR) and memory locations within the Si825x. As shown in Figure 6, Kernel_Init begins
by enabling the VDD monitor, which resets to the Si825x when its bias supply falls below a preset minimum voltage.
The MCU watchdog timer is then enabled and the oscillator frequency set.

The remaining on-chip hardware is initialized in a similar way: the port I/O mode (open drain, push/pull/weak
pullup) is configured, and pin functions are assigned (e.g., assignment of SMBus port lines, ADC0 inputs, etc.).
Timer2, which supplies the kernel 100 µs time tick, is then initialized and enabled. This is followed by initialization
of the UART, external ENABLE input, and REFDAC. When a network interface is built into the project, the kernel
parameter table pointer defaults to the scKernelCtlDefault table only when the Si825x is run for the first time after
programming. Thereafter, the pointer defaults to the network interface settings structure. For a non-network
interface build, the pointer unconditionally defaults to scKernelCtlDefault. The library function, sxKernelCtl, block
copies the contents of the selected parameter table from Flash memory into the appropriate RAM locations. The
remaining hardware initialization (DPWM, DSP Filter current limit, and OCP) are then initialized, and interrupts are
enabled. Variable uKernelState is then set to KSTATE_HIGH_INIT, which is decoded by Kernel_Process and
results in a switch to the Kernel_High_Level_Init_Process.

Kernel_Init also services the ADC0 analog multiplexer (AMUX). As shown in the lower right side of Figure 6, an
ADC0 end-of-conversion interrupt causes software to increment the AMUX channel and initiate another conversion
cycle.

AN271

14 Rev. 0.3

Figure 6. Kernel_Init Flowchart

Enable VDD
Monitor

Kernel_Init

Enable Watchdog
Timer

Select clock source,
initialize Osc/PLL

Configure I/O
Crossbar

Initialize and
Start Timer 2

(100 us Timer)

Initialize UART &
Baud Rate Gen

(Timer1)

Initialize DSP filter
engine coefficients

Configure
ENABLE input

Configure hardware
current limit

and OCP

Select VDD monitor
as reset source

Enable REFDAC

Load stored kernel
SW parameters
from FLASH to

XRAM

Initialize network
interface

Kernel_High_
Level_Init

Initialize ADC0,
enable threshold

detection as needed

Initialize isolated
comm (UART)

watchdog

Configure Timer
Modes, Timers 0, 3

& SMBUs Port

Initialize DPWM

Start ADC0 data
conversions

Enable ADC0
interrupts per
configuration

Enable global
interrupts

State Flowchart

ADC0_Sample
_Event

Decode ADC0
channel to be

converted

Select AMUX
channel

Start conversion

Interrupt Service
Routine

AN271

Rev. 0.3 15

4.3. Kernel High Level Initialization (Kernel_High_Level_Init_Process)
4.3.1. Description and Operation

This kernel process state is essentially a “power converter reset” state. That is, various power-converter-specific
functions and parameters, such as status and control flags, internal and external enable controls, stop modes, and
restart counters, are initialized. No low-level Si825x hardware initialization, such as I/O port configuration, is
performed.

Program execution begins by resetting the communications watchdog timer. This timer asserts its output when
UART communication (typically used to transmit data across an isolation barrier) ceases for a specified time period
indicating a communications fault. For example, an Si8250 located on the secondary side of a power supply might
use a primary-side microcontroller to digitize and transmit VIN data across an isolation barrier using its UART. A
failure in the primary-side controller would cause the communications across the isolation barrier to cease, which,
in turn, would cause the communications watchdog to time out and assert its output. The Si8250 recognizes this
action as a communications fault and halts operation as a result.

The next program operates reset status and control flags and initializes the internal and external “enables” signals
(if used). The output voltage margins are set, and the counters and restart timers are reset. Program execution
then exits to the validation phase in preparation for soft-start.

AN271

16 Rev. 0.3

Figure 7. Kernel_High_Level_Init Flowchart

Reset VOUT, VIN,
Temp static

fault status flags

Kernel_High_
Level_Init

Reset VOUT, VIN,
Temp network

interface status and
control flags

Initialize
soft-stop flag

Reset
internal enable bit

Clear VOUT margin
status flags

Initialize millisecond
counter

Kernel_Validation_
Init_Process

Reset isolated
comm (UART)
watchdog timer

Decode/initialize
network interface

enable interrupt and
mask bits

Set polarity of
enable input

Initialize
Restart Counters

AN271

Rev. 0.3 17

4.4. Kernel Validation Initialization (Kernel_Validation_Init_Process)
4.4.1. Description and Operation

This kernel process state (Figure 8) prepares the system for “validation”—a sequence of system parameter tests to
determine if it is permissible to initiate soft-start. Program execution begins by updating status and control flags. To
ensure that fault and warning flag states are correct, they are reset to zero during this kernel process state in
preparation for updating during the validation process state that immediately follows.

Startup delay (tON) is defined as the time period between the end of validation and the beginning of the actual soft-
start ramp (startup delay is a programmable variable specified in the network interface spec). This delay is
implemented using a software startup delay counter synchronized to the 100 µs event timer, and the time-out value
is stored in the variable, sxKernelCtl.ton_delay. This process state is then complete; the next kernel process state
is validation.

Figure 8. Kernel_Validation_Init_Process Flowchart

Update status flags

Kernel_Validation_
Init_Process

Clear ADC0 and
UART data

channels, clear
filters

Kernel_Validation_
Process

Warning/fault
flags = 1

(Kernel Validation
state initialization)

Initialize turn-on
delay time counter

AN271

18 Rev. 0.3

4.5. Kernel Validation Process (Kernel_Validation_Process)
4.5.1. Description and Operation

This kernel process state unconditionally tests system parameters to determine if it is permissible to initiate soft-
start. In addition, it manages a software 1 ms startup timer and validation counter when the 100 µs time tick is
asserted.

Program execution begins with initialization of the validation counter, which keeps track of the validation status by
decrementing each time a startup permissive is satisfied. As a result, a validation counter will equal zero when all
permissives have been satisfied, indicating soft-start can begin. If the end application is isolated, the Si825x is
assumed to be on the secondary side of the supply. A small MCU with on-board ADC located on the primary-side
is recommended to digitize local analog parameters, such as supply input voltage, and transmit them to the
secondary-side Si825x in packet form via UART. (Application software for the primary-side C8051F300 MCU is
also included in the Si8250DK development kit or available for download at www.silabs.com.)

The function, mIsUINxRdy(), checks for the presence of new primary-side data from UART, and the
mUINPacketProcess() packet processor is called if new data is available. The packet processor “unbundles” the
individual parameters received. Fault status is updated as follows: fault flags are cleared, and the
Kernel_UIN_Threshold_Process() is called to test the value of each parameter against upper and/or lower limits.
The packet communication is finalized by the UART done function, mUINxDone(). If the end application is non-
isolated, supply input voltage (and all other parameters) are digitized ADC0 and the thresholds checked in
software. Analog parameters converted by ADC0 are digitized and filtered (averaged) to minimize error due to
noise. The resulting values are then threshold-checked to ensure they are within limits. The read temperature
sensor routine is a typical example of conversion and conditioning of an analog process. The function,
mIsInputRdy(TEMP), checks for the presence of converted temperature data. If new data is available and all
temperature-related warning and fault flags are cleared, the converted data is filtered by the
mFilterProcess(TEMP) function and limit-checked by Kernel_TEMP_Threshold_Process.

The result of these operations is an updated, filtered temperature measurement and an updated set of temperature
warning and fault flags. (Other analog parameters are handled in much the same way; for example, the sequence,
mIsInputRdy(AIN3), mFilterProcess(AIN3), Kernel_AIN3_Threshold_Process, processes ADC0 input AIN3 in the
same manner as the temperature sensor output signal described above.) The feedback parameter, VSENSE, is
digitized in the same way, except filtering is provided by the mAdvFilterProcess (VSENSE,6) function. This function
is an advanced filter with a programmable cutoff frequency determined by the number in parentheses (valid cutoff
frequency range is 0 to 8).

Kernel operations are synchronized by a 100 µs timetick supplied by Timer2. If a 100 µs time tick is asserted,
interrupting source Timer2 is reset, and the communications watchdog, delay counter (used in the tON delay
algorithm), and startup counter (used in soft-start algorithm) are all updated. If 100 µs time tick is not asserted,
system parameters are tested by the validation tree to determine if it is permissible to initiate soft-start. Each
decision in the validation tree tests the state of each parameter status flag—if the state is false (no fault present),
the validation counter is decremented; if the state is true, the validation counter is left unchanged. As shown in
Figure 9, the input voltage, internal and external enable, temperature, and communication fault flags are checked,
and if all are false, the validation count is driven to zero, and startup initialization begins.

http://www.silabs.com
http://www.silabs.com

AN271

Rev. 0.3 19

Figure 9. Kernel_Validation_Process Flowchart

Get UART
data packets

Kernel_Validation_
Process

Acquire and filter
temperature (ADC0)

Check UART VIN
Thresholds &

update status flags

Check Temp
thresholds & update

status flags

Initialize validation
counter

Acquire and filter
VSENSE

VIN > UVLO?

Yes

Decrement
Validation Counter

No

VIN > Warning?

Yes

Decrement
Validation Counter

No

Is the
internal enable
flag masked?

Yes

Decrement
Validation Counter

No

Is the external
ENABLE input

masked?

Decrement
Validation Counter

No

Yes

Validation
Counter = 0?

Yes

No

Is temperature in
safe operating

window?

Yes

Decrement
Validation Counter

No

Isolated comm
(UART) fault

present?

Yes

Decrement
Validation Counter

No

Service
Network Interface

Port

No

Yes
100 us Timetick?
(Timer2 overflow)

Update isolated
comm (UART)

watchdog

Update 1 ms delay
start-up counter

Update start-up
timer and validation

counter

Enable the
internal enable flag

Reset Timer2

Is
ol

at
ed

 s
up

pl
ie

s
on

ly

Get converted
ADC0 data

Check VIN
thresholds and

update status flags

Additional user-
analog signals

Is the ENABLE
input =ON state?

No

Yes

Switch to Lockout
State

End of Process

Switch to Start Init
State

AN271

20 Rev. 0.3

4.6. Kernel Soft Start Initialization Process (Kernel_Soft_Start_Init_Process)
4.6.1. Description and Operation

This kernel process state (Figure 10) prepares the system for a soft-start. It begins by clearing all fault and warning
status flags. The bDeviceOff status flag is cleared to indicate the power system is no longer in the OFF state. Next,
the REFDAC is set to zero output in preparation for a zero pre-bias start (startup into pre-bias is automatically
handled by the Kernel_Soft_Start_Process state). The integrator term in the PID filter is enabled (it was previously
disabled to prevent integrator wind-out), and ADC1 is enabled. The output voltage target value is set next. To avoid
overshoot at the end of transition, the output voltage target is set to a value that is slightly less than the specified
regulated output voltage. This is accomplished by stopping the voltage ramp two 100 µs time ticks before the rated
output voltage level is achieved (the last part of the voltage ramp will be completed by the transition process).
Finally, the startup warm-up timer is initialized, and control execution passes to the soft-start warm-up process
state.

Figure 10. Soft_Start_Init_Process Flowchart

Update software
status flags

Soft_Start_Init_
Process

Initialize REFDAC
data input (zero bias

or pre-bias value)

Enable voltage
mode HW control

loop

Clear all faults and
warnings

Set target output
voltage

Set soft-start
warm-up time

End of Process

Switch to soft-start
warm-up state

AN271

Rev. 0.3 21

4.7. Kernel Soft Start Warm-up Process (Kernel_Soft_Start_WarmUp_Process)
4.7.1. Description and Operation

This kernel process state provides an adjustable time delay (tON) prior to the beginning of the soft-start ramp (tON).
This delay time is beneficial in that it allows the software filter outputs to settle. This process state unconditionally
performs routine kernel maintenance operations (averaging and threshold-testing parameters, etc.). In addition,
soft-start warm-up-specific operations are performed when the 100 µs time tick is asserted.

If the 100 µs time tick is asserted, interrupting source Timer2 is reset, and startup delay timer service begins. If
the startup delay counter is a zero, delay time has expired, and the startup delay counter is reset followed by
initialization of soft-start parameters as follows:

Parameter soft_ref determines the step size of each update to the soft-start ramp, that is, the number of
REFDAC LSBs changed by software on each soft-start ramp update. Soft_ref will be = 1 for all but the fastest
ramp times; increasing soft_ref increases soft-start slope but decreases step resolution.
The soft scale parameter (soft_scale_val) determines the rate at which the soft-start ramp is updated—the
higher the value, the longer the time between updates (and consequently the slower the soft-start ramp).
Following these operations, a RETURN statement is executed, and program control exits this process state and
returns to the calling process state.

If the startup delay counter is not zero, startup delay is still in progress. In this case, the startup timer is updated
(decremented), and the average duty cycle is calculated by the mAdvFilterProcess(DPWM,8). The isolated
communications watchdog timer is then updated, and program execution is moved to maintenance operations
starting with network interface service (merge point A in Figure 11).

If 100 µs time tick is not asserted, program execution moves to maintenance operations starting with network
interface service (merge point A in Figure 11). Analog parameters are converted averaged and their limits
threshold-checked (UART for primary-side parameter measurements in isolated systems). The state control
processor is then called to manage possible fault conditions.

AN271

22 Rev. 0.3

Figure 11. Kernel_Soft_Start_WarmUp_Process Flowchart

Kernel_Soft_Start_
WarmUp_Process

Initialize Soft-Start
parameters

Reset Timer2

Reset Start-up
counter

No

Yes

Process isolated
comm (UART)

packets

100 µs Timetick?
(Timer 2)

End of Process

Warm-Up Done?

Yes

No Service Network
Interface

Filter converted
VSENSE data

Check VIN Level
for Fault/Warning

Decrement
Start-up counter

Process isolated
comm (UART)
watchdog timer

Calculate average
duty cycle

Get converted
ADC0 data

Check VIN Level
for Fault/Warning

Switch to State
Control

A

IS
O

LA
TE

D

SU
P

P
LI

ES

N
O

N
-ISO

LATE
D

S

U
P

PLIE
S

AN271

Rev. 0.3 23

4.8. Kernel Soft Start Process (Kernel_Soft_Start_Process)
4.8.1. Description and Operation

This kernel process state generates a fixed rate output voltage ramp. The digitized VSENSE parameter is retrieved
when the result of the mIsInputRdy(VSENSE) is logic 1 and averaged by the function, mAdvFilterProcess
(VSENSE,6). This function is an advanced filter with a programmable cutoff frequency determined by the number
in parentheses (valid cutoff frequency range is 0 to 8—the higher the number the lower the cutoff frequency). The
network interface is then serviced.

If the end application is isolated, the Si825x is assumed to be on the secondary side of the supply. A small MCU
with onboard ADC located on the primary side is recommended to digitize local analog parameters, such as supply
input voltage, and transmit them to the secondary-side Si825x in packet form via UART. (Application software for
the primary-side MCU is also included in the Si8250DK development kit or available for download at
www.silabs.com). The function, mIsUINxRdy(), checks for the presence of new primary-side data from UART, and
the mUINPacketProcess() packet processor is called if new data is available. The packet processor “unbundles”
the individual parameters received. Fault status is updated as follows: fault flags are cleared, and the threshold
process, Kernel_UIN_Threshold_Process(), is called to test the value of each parameter against upper and/or
lower limits. The packet communication is finalized by the UART done function, mUINxDone().

The converted VSENSE and temperature values are retrieved when the results of the mIsInputRdy(VSENSE) and
mIsInputRdy(TEMP) functions are logic 1, respectively. Filtering is provided by the mAdvFilterProcess (VSENSE,6)
function. The mFilterProcess(TEMP) function averages the temperature sensor output signal, followed by limit
checking by the Kernel_TEMP_Threshold_Process.

Kernel operations are synchronized by a 100 µs timetick supplied by Timer2. When a timetick occurs, Timer2 is
reset and the supply output voltage increased by the soft-start slope regulation algorithm
Indirect_Soft_Transition_Process(). This algorithm regulates the linearity of the soft-start ramp by automatically
adjusting the REFDAC to maintain a constant output voltage slope. Upon exit from this function, the REFDAC data
value is checked for a magnitude greater than the output voltage target. If the results of this test are true, the soft-
start kernel process state is complete, and program control is passed to the regulation initialization process state
(Kernel_Regulation_Init_Process). If the REFDAC data value is below the target output voltage level, the soft-start
kernel process state is not yet complete; as a result, soft-start kernel process state execution continues. The soft-
start kernel process state has a built-in 1 ms software timer that both acts as a prescaler for the startup timer; it also
ensures that the isolated communication watchdog timer and tONMAX fault are periodically serviced. The 1 ms timer
is serviced as follows: if the 1 ms timer value is not equal to zero, the 1 ms timer is updated (decremented); then,
the startup (tONMAX) software timer is updated. The startup timer is then checked for a zero value (expiration), in
which case the tONMAX fault flag (bTonMaxFault) is set indicating a tONMAX fault. If the timer value is zero (1 ms
timeout expired), the timer is reset, and program execution moves immediately to process exit service routines
(isolated communications watchdog service, calculation of average duty cycle and service of tONMAX fault). The
final step in this kernel process state is servicing the tONMAX fault; if the tONMAX fault flag is set indicating a fault is
present, program control is transferred to the fault recovery initialization state. Otherwise, the state control process
state is called to resolve any pending faults.

http://www.silabs.com

AN271

24 Rev. 0.3

Figure 12. Kernel_Soft_Start_Process Flowchart

Kernel_Soft_Start_
Process

Filter VSENSE

Check VIN
Thresholds for

Warning/Lockout

Filter VSENSE &
Temp analog data

Service Network
Interface

Get isolated comm
(UART) packets

100 µs timetick?
(Timer2 O/F)

NoYes

Get converted
ADC0 data

Check VIN
thresholds and

update status flags

Yes No

Soft-start slope
regulation algorithm

Reset Timer2

Max tON Fault?
Yes

No

End of Process

Service isolated
comm (UART)

watchdog

Calculate Average
PWM Duty Cycle

1 ms timetick
counter = 0?

State Control
Process

Switch to Fault
Recovery Init State

Yes

No

Process
Start-Up timer

Decrement 1 ms
timetick counter

Start-Up timer
= 0?

Yes Set
max tON fault flag

(bTonMaxFault = 1)

Decrement Start-up
Timer Counter

No

Is REFDAC >
VOUT Target?

Switch to
Regulation Init State

Reset 1 ms
SW timer

AN271

Rev. 0.3 25

4.9. Kernel Regulation Initialization Process (Kernel_Regulation_Init_Process)
4.9.1. Description and Operation

This process prepares the system to enter steady-state regulation. Process execution begins with updating
software status flags followed by initialization of the following network interface parameters: transition rate, VOUT
margins, and trim and cal settings. All fault flags are then cleared (to remove any residual status information that
has already been serviced). ADC1 LSB size is then set, and program control switches to the kernel transition
process state.

Figure 13. Kernel_Regulation_Init_Process Flowchart

Kernel_Regulation_
Init_Process

Update software
status flags

Set trim and cal
(Network Interface

parameters)

Clear all Fault and
Warning Flags

Set transition rate
(Network Interface

parameter)

Set Vout margins
(Network Interface

parameters)

End of Process

Set ADC1
LSB Size

Switch to Transition
State

AN271

26 Rev. 0.3

4.10. Kernel Transition Process (Kernel_Transition_Process)
4.10.1. Description and Operation

The kernel transition process state completes the soft-start process by gently ramping the output voltage into its
specified range without overshoot. This process state unconditionally performs routine kernel maintenance
operations (averaging and threshold-testing parameters, etc.). In addition, transition-specific operations are
performed when the 100 µs time tick is asserted. (Transition operations consist of decrementing a transition rate
timer (counter) on each 100 µs timetick and updating the output voltage value when the timer reaches zero.) An
output voltage update operation consists of servicing the transition rate counter, updating the REFDAC control
variable, and writing the updated control value to the REFDAC. This sequence of operations results in an
incremental change in output voltage toward its nominal steady-state value.

If the 100 µs time tick is asserted, interrupting source Timer2 is reset, and a transition operation is executed as
follows:

If the transition rate timer is zero, it is time for an output voltage update. In this case, the transition rate
counter is reset to its initial value, and the output voltage is updated as follows:
 The REFDAC data value is retrieved and compared to the target output voltage value. If the REFDAC data value equals

the target output voltage value, transition is complete, and execution switches to the kernel regulation process state.
 The REFDAC data value is incremented if its value is less than the target output voltage and decremented if it is greater

than the target output voltage value.
 The updated REFDAC data value is written to the REFDAC.

If the transition rate timer is not zero: the transition rate counter is decremented and maintenance tasks are
performed (service isolated communications (UART) watchdog timer, calculate average duty cycle). Program
execution then moves to the maintenance operations at program merge point A in Figure 14 (the same routine
maintenance sequence executed when the 100 µs time tick is not asserted as described above).

If the 100 µs time tick is not asserted, program execution moves to program merge point A of Figure 14. (It is
also possible to arrive at this process program location if the 100 µs was executed without completing the transition
process.) The digitized VSENSE parameter is filtered (averaged) by the mFilterProcess (VSENSE) function, and
the converted temperature sensor output signal is filtered by the mFilterProcess (TEMP) function. The resulting
VSENSE and temperature values are then threshold checked for warnings and faults by the
Kernel_VSENSE_Threshold_Process and Kernel_TEMP_Threshold_Process, respectively. Service to the network
interface port is then performed, followed by an input voltage measurement and threshold check.

If the end application is isolated, the Si825x is assumed to be on the secondary side of the supply. A small MCU
with onboard ADC located on the primary side is recommended to digitize local analog parameters, such as supply
input voltage, and transmit them to the secondary-side Si825x in packet form via UART. (Application software for
the primary-side MCU is also included in the Si8250DK development kit or available for download at
www.silabs.com.) The function, mIsUINxRdy(), checks for the presence of new primary side data from UART, and
the mUINPacketProcess() packet processor is called if new data is available. The packet processor “unbundles”
the individual parameters received. Fault status is updated as follows: fault flags are cleared, and the Threshold
Process Kernel_UIN_Threshold_Process() is called to test the value of each parameter against upper and/or lower
limits. The packet communication is finalized by the UART done function, mUINxDone(). The kernel state control
process state is then called to process any pending fault conditions.

http://www.silabs.com

AN271

Rev. 0.3 27

Figure 14. Kernel_Transition_Process Flowchart

Kernel_Transition_
Process

Filter VSENSE,
temperature

Reset transition rate
counter

End of Process

Test Temp
thresholds for
warning/fault

No

Yes
100 us Timetick?
(Timer 2 overflow)

Get isolated comm
(UART) data

Test VIN thresholds
for warning/fault

Is transition rate
counter >0?

Yes

Decrement
transition rate

counter

Reset Timer2

No

Increment
REFDAC
data value

Target VOUT >
REFDAC data

value?

Yes

No

Decrement
REFDAC
data value

Target VOUT <
REFDAC

data value?

Yes

No

Write REFDAC data
value to

REFDAC SFR

Get REFDAC
data value

Process Network
Interface

Process the isolated
comm (UART)

watchdog

Calculate average
duty cycle

Run State Control
Process

Switch to
Regulation State

A

AN271

28 Rev. 0.3

4.11. Kernel Regulation Process (Kernel_Regulation_Process)
4.11.1. Description and Operation

This kernel process state handles all system operations during steady-state regulation including nonlinear control,
input voltage feed-forward, fault detection, network interface service, and others. This process state unconditionally
performs routine kernel maintenance operations (averaging and threshold-testing parameters, etc.). In addition,
steady-state regulation-specific operations are performed when the 100 µs time tick is asserted.

The kernel regulation process state begins with the analog-to-digital conversion of the VSENSE and the onboard
temperature sensor signal. The converted VSENSE result is filtered by the mFilterProcess (VSENSE,6) function,
and the temperature value is filtered by the mFilterProcess(TEMP) function. Each resulting value is threshold-
checked by the Kernel_VSENSE_Threshold_Process and Kernel_TEMP_Threshold_Process, respectively.

Kernel operations are synchronized by a 100 µs time tick event generated by Timer2.

If a 100 µs time tick is asserted, interrupting source Timer2 is reset, the isolated communications watchdog timer is
then updated by the function, mUINWtDogProcess(), and the average duty cycle is calculated by the function,
mAdvFilterProcess (DPWM, 8)—an advanced filter with a programmable cutoff frequency determined by the
number in parentheses (valid cutoff frequency range is 0 to 8). The transient detector threshold is also fine-tuned.
(The nonlinear control algorithm is on a separate processing thread and is invoked by an interrupt generated by the
transient detector.) Program execution then moves to program merge point A (Figure 15) to begin execution of
maintenance operations.

If a 100 µs time tick is not asserted, routine maintenance updates are performed. (These same maintenance
operations (merge point A on Figure 15) are also executed after the completion of the 100 µs interval soft-stop
processing.)

The remainder of this process state consists of processing and threshold testing the input voltage level and
possibly addressing related faults. If the end application is isolated, the Si825x is assumed to be on the secondary
side of the supply. A small MCU with on-board ADC located on the primary-side is recommended to digitize local
analog parameters, such as supply input voltage, and transmit them to the secondary-side Si825x in packet form
via UART. (Application software for the primary-side MCU is also included in the Si8250DK development kit and is
available for download at www.silabs.com.)

The function, mIsUINxRdy(), checks for the presence of new primary-side data from UART, and the
mUINPacketProcess() packet processor is called if new data is available. The packet processor “unbundles” the
individual parameters received. Fault status is updated as follows: fault flags are cleared, and the threshold
process, Kernel_UIN_Threshold_Process(), is called to test the value of each parameter against upper and/or
lower limits. (If the end application is non-isolated, supply input voltage (and all other parameters) are digitized
ADC0 and the thresholds checked in software.

Analog parameters converted by ADC0 are digitized, then filtered (averaged) to minimize error due to noise. The
resulting values are then threshold-checked to ensure they are within limits. The next operations are low-bandwidth
loop optimization functions. The function, Balance_Primary_Process(), adjusts the DPWM trim registers to change
the pulse width offset of the PH1 output to maintain the voltage on the input capacitive divider at measured VIN/2.
Voltage mode control loop gain varies with input voltage; so, analog systems typically apply PWM slope
compensation to counteract these changes by varying the slope of the PWM ramp. The function,
Feed_Forward_Process(), achieves the same result in the digital domain by varying gain term A3 in proportion with
the value of VIN to maintain a constant loop gain over the specified input voltage range.

The function, Active_Dead_Time_Process(), continuously adjusts the dead time between the main buck switch and
the synchronous rectifier switch to minimize the freewheeling time of the synchronous rectifier body diode.

http://www.silabs.com

AN271

Rev. 0.3 29

Figure 15. Kernel_Regulation_Process Flowchart

Kernel_Regulation_
Process

Filter VSENSE,
temperature

End of Process

Test Temp for
warning/fault

thresholds

No

Yes
100 µs Timetick?
(Timer2 overflow)

Get isolated comm
(UART) data

Process Network
Interface

Process isolated
comm (UART)

watchdog

Calculate Average
PWM Duty Cycle

Reset Timer2

Test VIN for
warning/fault
thresholds

Run State Control
Process

A

VIN feed-forward
compensation

Regulate
DC Balance

Active
Dead-Time control

Fine-tune transient
threshold

AN271

30 Rev. 0.3

4.12. Kernel Stop Initialization Process (Kernel_Stop_Init)
4.12.1. Description and Operation

The kernel stop initialization process state prepares the system for shutdown. Default operation is as follows:

A “hard stop” (DPWM outputs immediately bypassed to programmed stop states) if the shutdown is caused by
a fault. In this case, the next kernel process state is fault recovery initialization.
A “soft stop” (controlled, negative-going output voltage ramp from nominal output voltage to zero volts) if soft-
stop mode is selected, and if the source of the shutdown is not a fault. In this case, execution moves to the
disabled kernel process state.

Figure 16. Kernel_Stop_Init_Process Flowchart

Kernel_Stop_Init_
Process

End of Process

No

YesFault flag?
(bFault = 1)

Halt regulation

HARD STOP

Enable software
bypassNo

YesSoft-stop flag?
(bSoftOff = 1)

Switch to Disabled
State

Switch to Soft-stop
State

Switch to Fault
Recovery Init State

AN271

Rev. 0.3 31

4.13. Kernel Soft Stop Process (Kernel_Soft_Stop)
4.13.1. Description and Operation

This kernel process state ramps the output voltage from its nominal value to zero at a fixed rate (it is essentially
“soft-start in reverse”). This process state unconditionally performs routine kernel maintenance operations
(averaging and threshold-testing parameters, etc.). In addition, soft-stop-specific operations are performed when
the 100 µs time tick is asserted.

Note: System shutdown automatically bypasses the kernel soft-stop process state and invoices a hard (immediate) stop if the
event causing the shutdown is a fault.

If a 100 µs time tick is asserted, interrupting source Timer2 is reset, and the soft-stop counter is checked for a
non-zero value. If the value is non-zero, the soft-stop timeout is still in progress; so, the counter is updated
(decremented), and program execution moves to the isolated communications (UART) watchdog timer processing
routine located at merge point A in Figure 17. However, if the soft-stop counter is equal to zero (expiration), the
REFDAC must be decremented to continue the downward output voltage ramp. In this case, the soft-stop counter
is initialized, and the REFDAC data value is compared to the output voltage target value. If the REFDAC data value
is greater than the output voltage target value, the REFDAC value is reduced and written to the REFDAC. If the
REFDAC value is less than the output voltage value, the output voltage must be at zero, at which point soft stop is
complete, and program execution switches to the disabled kernel process state.

If a 100 µs time tick is not asserted, only routine updates are performed. These updates consist of acquiring and
processing analog parameters and threshold testing input voltage for faults. The converted VSENSE result is filtered
by the mAdvFilterProcess (VSENSE,6) function, an advanced filter with a programmable cutoff frequency
determined by the number in parentheses (valid cutoff frequency range is 0 to 8).

The mFilterProcess(TEMP) function averages the temperature sensor output signal, followed by limit checking by
the Kernel_TEMP_Threshold_Process. The network interface is then processed, followed by measurement of the
supply input voltage. In an isolated system, primary-side data is obtained via UART by the kernel packet processor
function mUINPacketProcess(). The values received are tested against upper and/or lower limits by the threshold
process function, Kernel_UIN_Threshold_Process. The packet communication is completed by the UART done
function, mUINxDone(). If the end application is non-isolated, supply input voltage (and other parameters) are
digitized ADC0, then filtered (averaged) to minimize error due to noise. The resulting values are then threshold-
checked to ensure they are within limits. The kernel state control process state is then called to manage any fault
conditions.

AN271

32 Rev. 0.3

Figure 17. Kernel_Soft_Stop_Process Flowchart

Kernel_Soft_Stop_
Process

100 µs timetick?
(Timer2 O/F)

No

Yes

End of Process

Reset Timer2

Soft-stop counter
> 0?

Yes

Decrement soft-stop
counter

No

Process isolated
comm (UART)

watchdog

Calculate Average
PWM Duty Cycle

Initialize soft-stop
counter

Get REFDAC
data value

Is REFDAC data
value > VOUT
target value?

Yes No

Filter VSENSE,
temperature

Get isolated comm
(UART) data

Test VIN thresholds
for warning/fault

Process Network
Interface

Write REFDAC data
value to REFDAC

SFR

Subtract slope value
from REFDAC data

value

Update fult status
(Call Kernel_State_
Control_Process)

Switch to Kernel
Disabled State

A

B

AN271

Rev. 0.3 33

4.14. Kernel Disabled Process (Kernel_Disabled_Process)
4.14.1. Description and Operation

This kernel process state terminates power system operation, checks for faults, and updates status flags
accordingly. This kernel state will also pass control to the high level init state for system restart attempts if the
appropriate conditions are met. Program execution begins with a software flag update to indicate the system has
been turned off. ADC1 is then disabled and the software bypass enabled, effectively forcing all DPWM outputs to
their OFF (safe) states. This is followed by routine service to the network interface. The VSENSE and temperature
sensor signals are then digitized by ADC0 and filtered by the functions, mFilterProcess (VSENSE) and
mFilterProcess (TEMP), respectively. System input voltage values for network interface reporting are acquired
next. In an isolated system, primary-side data is obtained via UART by the kernel packet processor function,
mUINPacketProcess(). Packet communication is completed by the UART done function, mUINxDone(). If the end
application is non-isolated, supply input voltage (and other parameters) are digitized ADC0, then filtered
(averaged) to minimize error due to noise. The next operations performed are synchronized to the 100 µs timetick.

If a 100 µs time tick is asserted, interrupting source Timer2 is reset, and the isolated communications (UART)
watchdog is processed. Next, the running-average duty cycle data accumulated during operation is cleared and
execution branches to reentry point A in Figure 18.

If 100 µs time tick is not asserted, the current kernel process state decides the next process state to be called
based on examination of the presence or absence of an isolated communications fault and the states of the
internal and external enable signals. A switch to the high level init process state (to attempt restart) will be made
only if the following three conditions are true: first, there is no isolated communications (UART) fault (if the fault is
present, program execution is switched to the lockout process state); second, the internal enable bit is unmasked
(enabled) and in the ON state; third, the external enable (if used) is unmasked and in the ON state.

AN271

34 Rev. 0.3

Figure 18. Kernel_Disabled_Process Flowchart

End of Process

Kernel_Disabled_
Process

Filter VSENSE,
temperature

Update software
status flags

Halt loop regulation

Enable SW Bypass

Service Network
Interface

Process isolated
comm (UART) data
(Network Interface

reporting)

Isolated comm
(UART) fault?

Yes

No

Is
External ENABLE

Input Masked?

Yes

No

Is external
ENABLE Input =

OFF?

Yes

No

Process isolated
comm (UART)

watchdog

Zero DPWM
average value

parameter

Reset Timer2
No

Yes
100 us Timetick?
(Timer2 overflow)

Is internal enable
masked?

YesNo

Switch to
High Level Init

 State

Yes Is internal enable
OFF?

No

Switch to
Lockout State

A

B

AN271

Rev. 0.3 35

4.15. Kernel Lockout Process (Kernel_Lockout_Process)
4.15.1. Description and Operation

This kernel process state maintains key system functions, such as monitoring enable signals for change and
servicing network interface communications, while the system power converter is shut down. The start of this
kernel process state is identical to the start of the disabled process state allowing either of these two process states
to halt converter operation. Program execution begins with termination power system operation. A software flag
update is performed to indicate the system has been turned off. ADC1 is then disabled and the software bypass
enabled, forcing all DPWM outputs to their OFF (safe) states. This is followed by routine service to the network
interface. The VSENSE and temperature sensor signals are then digitized by ADC0 and filtered by the functions,
mFilterProcess (VSENSE) and mFilterProcess (TEMP), respectively. System input voltage values for network
interface reporting are acquired next. In an isolated system, primary-side data is obtained via UART by the kernel
packet processor function, mUINPacketProcess(), after receive data is available as checked by the
mIsUARTRxRdy() function. The packet communication is completed by the UART done function, mUINxDone(). If
the end application is non-isolated, supply input voltage (and other parameters) are digitized ADC0, then filtered
(averaged) to minimize error due to noise. The next operations performed are synchronized to the 100 µs timetick.

If a 100 µs time tick is asserted, interrupting source Timer2 is reset, and the isolated communications (UART)
watchdog is processed. Next, the running-average duty cycle data accumulated during operation are cleared and
execution branches to reentry point A in Figure 19.

If 100 µs time tick is not asserted, program execution falls through to common program merge point A in Figure 19.
Here, internal and external enable signals are tested to determine if they are unmasked and in the ON state. If
either signal tests true, a switch to the disabled state is made to allow converter restart attempts.

AN271

36 Rev. 0.3

Figure 19. Kernel_Lockout_Process Flowchart

Process isolated
comm (UART)

watchdog

Zero DPWM
average value

parameter

Reset Timer2

Kernel_Lockout_
Process

Filter VSENSE,
temperature

Update status and
control flags

Halt loop regulation

Enable SW bypass

Process Network
Interface

Get isolated comm
(UART) data

End of Process

No

Yes
100uS Timetick?
(Timer2 overflow)

Internal enable
NOT masked AND

true?

Yes

No

ENABLE input
NOT masked and

false

Yes

No

Switch to Disabled
State

A

AN271

Rev. 0.3 37

4.16. Kernel Fault Recovery Initialization Process (Kernel_Recovery_Init_Process)
4.16.1. Description and Operation

This kernel process state manages restart counters and flags for detected faults in preparation for fault recovery.
The flowchart shown in Figure 21 is a decision tree composed of seven individual decision cells each having the
basic flow shown in the example of Figure 20. There is one decision cell for each of the following faults: VOUT
overvoltage, VOUT undervoltage, VIN overvoltage, VIN undervoltage, over temperature, under temperature, and
tONMAX. Per the network interface specification, any given fault is allowed seven restart attempts before action is
taken to implement fault recovery.

The example decision cell shows the overvoltage fault Figure 20. Program execution can bypasses service to the
fault bit (i.e., ignore the fault) if so programmed via the network interface. When so programmed, execution
branches to the next fault service routine in the tree. If not bypassed, the fault flag (e.g., VOUT over voltage fault) is
tested for logic 1. If the results of this test are true, the fault restart counter is checked for a value between 1 and 7
inclusive, per network interface specs. If it is in this range, the restart counter is updated (decremented), and
program execution advances to the next fault in the tree. However, if the fault bit is still true and the restart counter
reaches the count of zero, program execution vectors to the lockout process state where the system is shut down.

Figure 20. Fault Recovery Decision Cell

No

Yes
VOUT OV flag =

1?

No

Yes

VOUT OV
restart count =

7?

No

Yes Is VOUT
OV restart

counter = 0?

No

Yes
Ignore

VOUT OV fault?

No

Yes

VOUT OV
restart count =

0?

Decrement VOUT
OV restart

counterSwitch to
Lockout State

ENTER

EXIT

AN271

38 Rev. 0.3

Figure 21. Kernel_Fault_Recovery_Init_Process Flowchart

Kernel_Fault_Recovery_
Init_Process

No

Yes
VOUT OV flag =

1?

No

Yes

VOUT OV
restart count =

7?

No

Yes Is VOUT
OV restart

counter = 0?

No

Yes
Ignore VOUT
OV fault?

No

Yes

VOUT OV
restart count =

0?

Decrement VOUT
OV restart

counterSwitch to
Lockout State

No

Yes
VOUT UV flag =

1?

No

Yes

VOUT UV
restart count =

7?

No

Yes Is VOUT
UV restart

counter = 0?

No

Yes
Ignore VOUT
UV fault?

No

Yes

VOUT UV
restart count =

0?

Decrement VOUT
UV restart

counterSwitch to
Lockout State

No

Yes
VIN OV flag =

1?

No

Yes

VIN OV restart
count = 7?

No

Yes
Is VIN OV restart

counter = 0?

No

Yes
Ignore VIN
OV fault?

No

Yes

VIN OV restart
count = 0?

Decrement VIN
OV restart

counterSwitch to
Lockout State

No

Yes
VIN UV flag =

1?

No

Yes

VIN UV restart
count = 7?

No

Yes Is VIN
UV restart

counter = 0?

No

Yes
Ignore VIN
UV fault?

No

Yes

VIN UV restart
count = 0?

Decrement VIN
UV restart

counterSwitch to
Lockout State

No

Yes
OT flag = 1?

No

Yes

OT restart
count = 7?

No

Yes Is OT restart
counter = 0?

No

Yes
Ignore

OT fault?

No

Yes

OT restart
count = 0?

Decrement OT
restart counter

Switch to
Lockout State

No

Yes
UT flag = 1?

No

Yes

UT restart
count = 7?

No

Yes Is UT restart
counter = 0?

No

Yes
Ignore

UT fault?

No

Yes

UT restart
count = 0?

Decrement UT
restart counter

Switch to
Lockout State

No

Yes
tONMAX flag =

1?

No

Yes

tONMAX restart
count = 7?

No

Yes
Is tONMAX restart

counter = 0?

No

Yes
Ignore

tONMAX fault?

No

Yes

tONMAX restart
count = 0?

Decrement
tONMAX restart

counterSwitch to
Lockout State

End of Process

AN271

Rev. 0.3 39

4.17. Kernel Fault Recovery Process (Kernel_Recovery_Process)
4.17.1. Description and Operation

This kernel process state verifies the fault, then directs program execution to the appropriate kernel process state.
A switch is made to the lockout or stop init process states if the fault requires system shutdown. A switch is made
to the validation init process state if the fault type specifies restart attempts. It also performs routine system
maintenance (network interface service, threshold-testing, etc.).

Program execution begins with the conversion of the VSENSE and onboard temp sensor signal filtering the results
from each and resetting their associated fault flags, then performing a threshold operation on both to determine if
either is at a warning or fault level. The next operations performed are synchronized to the 100 µs timetick.

If a 100 µs time tick is asserted, interrupting source Timer2 is reset, and the isolated communications (UART)
watchdog is processed. Next, the running-average duty cycle data accumulated during operation are cleared, and
main loop execution resumes with routine network interface maintenance.

If 100 µs time tick is not asserted, Program execution falls through to the network interface maintenance reentry
point.

Next, input voltage is converted and threshold-checked. In an isolated system, primary-side data is obtained via
UART by the kernel packet processor function, mUINPacketProcess(). The packet communication is completed by
the UART done function, mUINxDone(). If the end application is non-isolated, supply input voltage (and other
parameters) are digitized ADC0, then filtered (averaged) to minimize error due to noise.

If no faults arise from the above processing, startup is permissible, and execution switches to the kernel validation
process state. If faults are present and the internal or external enable signals are unmasked and true (i.e.,
“activated” (unmasked) and in their ON state), the system must be shut down, and program execution vectors to
the stop init process state.

AN271

40 Rev. 0.3

Figure 22. Kernel_Fault_Recovery_Process Flowchart

Kernel_Fault_
Recovery_Process

No

Yes
Reset OV fault flag

VSENSE A/D
conversion
complete?

Low-pass filter

Check warning/fault
thresholds

No

Yes Reset Over and
under temp fault

flag(s)

Temp. A/D
conversion
complete?

Low-pass filter

Check warning/fault
thresholds

No

Yes
100 µs Timetick?
(Timer2 overflow)

Reset Timer2

Process isolated
comm (UART)

watchdog

Zero DPWM
average value

parameter

Process Network
Interface

Get isolated comm
(UART) data

Test VIN for
warning/fault

thresholds

No

Yes

Are any faults
present?

No

YesIs internal enable
unmasked and

false?

No

Yes

No

Yes
Is there an isolated

(UART) comm
error?

Switch to
Lockout State

Is external
ENABLE input
unmasked and

false?

End of Process

Reset VIN under
and overvoltage

fault flags

Switch to Kernel
Validation State

Switch to
Stop Init State

Switch to
Stop Init State

A

A

AN271

Rev. 0.3 41

4.18. Kernel State Control Process (Kernel_State_Control_Process)
4.18.1. Description and Operation

This kernel process state executes the action associated with a fault. It checks all fault status flags and takes the
appropriate action (e.g., system shutdown and/or process state change). This process state is called by other
process states as a service function.

Starting at the top of Figure 23, the first seven decision cells service the isolated communications watchdog, input
overcurrent, input overvoltage, input undervoltage, over-temperature, and under-temperature faults. Output
overvoltage and undervoltage faults are also processed in the same way but only when the system is not in startup.
As in the fault recovery init process state of “4.17. Kernel Fault Recovery Process (Kernel_Recovery_Process)”,
each of these faults can be optionally ignored if so programmed by the network interface. In each case and if not
ignored, the presence of any of these faults will enable output bypass forcing the DPWM outputs into their OFF
(safe) states, update the system OFF status flag, and switch program execution to the fault recovery init process
state.

Execution is immediately switched to the stop init state when the input voltage is at or below the undervoltage
lockout (UVLO) threshold or when either the external or internal enable signals are unmasked and false (OFF).
The last decision cell in the tree allows the output voltage to be programmed over the network interface, except
when the system is in startup.

AN271

42 Rev. 0.3

Figure 23. Kernel_State_Control_Process Flowchart

Kernel_State_
Control_Process

No

Yes
Enable software

bypass
Comm watchdog

error flag = 1?

Get all status flags

No

YesInput overcurrent
fault flag = 1?

No

YesVin overvoltage
fault flag = 1?

No

YesVin undervoltage
fault flag = 1?

No

YesOvertemp
fault flag = 1?

No

YesUndertemp.
Fault flag = 1?

No

Yes

Start-up mode
flag = 1?

No

YesVout under or over
voltage fault flag =

1?

No

YesInternal enable
unmasked and =

0?

No

YesVin UVLO
flag = 1?

No

YesEnable input
unmasked and

= 0?

No

Yes

Start-up flag = 1? Network Interface
VOUT command?

Yes

No

Update status flags

End of Process

Switch to Lockout
Processs

No

Yes

Ignore fault?

Switch to Reg Init
State

Switch to Stop Init
State

Switch to Stop Init
State

Switch to Stop Init
State

Enable software
bypass

Set fault status flag
(bFault = 1)

Switch to Fault
Recovery Init

Process

No

Yes

Ignore fault?

Enable software
bypass

Yes

Ignore fault?
No

Yes

Ignore fault?
No

Yes

Ignore fault?
No

Enable software
bypass

Set fault status flag
(bFault = 1)

Switch to Fault
Recovery Init

Process

Enable software
bypass

Set fault status flag
(bFault = 1)

Switch to Fault
Recovery Init

Process

Enable software
bypass

Set fault status flag
(bFault = 1)

Switch to Fault
Recovery Init

Process

Yes

Ignore fault?
No

Yes

Ignore fault?
Enable software

bypass
Set fault status flag

(bFault = 1)

Switch to Fault
Recovery Init

Process

Set fault status flag
(bFault = 1)

Switch to Fault
Recovery Init

Process

No

AN271

Rev. 0.3 43

4.19. Kernel Threshold Process (Kernel_Parameter_Threshold_Process)
4.19.1. Description and Operation

This group of service processes supports fault detection for all other kernel process states. There are separate
threshold processes for each parameter source (i.e., each UART packet and ADC0 AMUX channel). Threshold
processes compare the value of the specified parameter to one or more static thresholds and update the
associated software status flag(s) with the comparison results.

A typical over/under fault/warning threshold process decision cell is shown in Figure 24. The parameter to have
thresholds checked is specified as part of the function call. For example, the correct function call to threshold-check
the temperature sensor is: Kernel_TEMP_Threshold_Process.

As shown, the specified parameter is first compared to static fault settings provided by the user’s software, followed
by the same operation to check warning thresholds. Each comparison sets the appropriate status flag, then returns
to the calling function.

Figure 24. Example Threshold_Process Parameter Flowchart

No

Set “Over
Parameter”

Fault flag

Set “Under
Parameter”

Fault flag

Set “Over
Parameter”
Warning flag

Set “Under
Parameter”
Warning flag

YesIs Parameter >
Upper threshold?

No

YesIs Parameter <
Lower threshold?

No

YesIs Parameter >
Upper warning?

No

YesIs Parameter <
Lower warning?

End of Process

Kernel_Parameter_
Threshold_Process

AN271

44 Rev. 0.3

APPENDIX A—LIBRARY FUNCTIONS

Functions

As previously mentioned, there are approximately 500 individual functions in the kernel library, all of which are
based on the functions listed in Table 5. The large number of functions is the result of multiple instantiations of the
functions listed above. For example, there are eight external analog inputs on ADC0, each channel of which has
eight different filters for a total of 64 filters. The following pages provide an overview of the functions listed in
Table 5.

Table 5. Kernel Functions Summary

Function Description

Balance_Primary_Process For half-bridge applications. A closed-loop feedback loop function that
maintains the voltage at the capacitive input divider node at a value of VIN/2
by adjusting the pulse width offset of one of the primary switching control
phases.

Active_Dead_Time_Process Optimizes efficiency by minimizing the value of the averaged u(n) for any
given load.

Feed_Forward_Process Implements VIN feed-forward operation. Maintains a constant loop gain by
adjusting DSP Filter Engine coefficient A3 with changes in input voltage.

Indirect_Soft_Transition_Process() Provides closed-loop soft start ramp linearity regulation.

mAdvFilterProcess(operand, n) Advanced filter function. The operand is processed by the filter the time
constant (cutoff frequency) determined by the value of n, where 0 < n < 8.

mFilterProcess(operand) Software filters (averages) the operand (digitized analog parameter).

mIsInputRdy(operand) Checks ADC0 for operand data conversion—returns a "1" if conversion is
complete.

mIsUARTRxRdy() Checks the UART—returns a "1" if receive data is ready.

mResetInput(operand) Clears the software filter associated with operand.

mUINClearWtDog Resets the isolated communication watchdog timeout period.

mUINDone() Checks the UART for end-of-packet processing—returns a "1" if processing
is finished.

mUINIsWtDogErr() Checks for an isolated communications watchdog error and returns a "1" if
error is present.

mUINPacketProcess() Extracts and stores parameters (packets) from the UART receive data
channel.

mUINWtDogProcess() Updates the isolated communications (UART) watchdog timer
decrementing the internal software counter.

PMBus_Process() Processes network interface requests and executes actions (if required).
Also manages the network interface-associated memory, I/O and other
resources.

Transient_Threshold_Process Fine-tunes the threshold detector threshold setting with increasing input
voltage.

AN271

Rev. 0.3 45

Balance_Primary_Process()

Description: Balance_Primary_Process() is a feedback algorithm that regulates the capacitive input node of a
half-bridge dc-dc converter to a value of VIN/2. It regulates by sampling the average capacitive node
voltage and comparing it to a reference value of the averaged input voltage divided by two. The
difference between these two terms is used to adjust duty cycle offset using the trim registers of
primary switching phase PH1 until the node voltage achieves a value of VIN/2.

Entry Parameters: Average VIN, Average capacitive node voltage

Exit Parameters: Increment/decrement or hold of trim variable TLCD1

Functional Flowchart:

Figure 25. Balance_Primary_Process Flowchart

Digitize
and

Filter Input Voltage
(VIN)

Digitize
and Filter

Capacitor Node
Voltage (VCap)

VREF >
Vcap?

VREF = VIN/2

Balance_Primary_Process

YES

Increment
DPWM PH1
trim register

VREF <
Vcap?

YES

Decrement
DPWM PH1
trim register

NO

NO

End of Function

AN271

46 Rev. 0.3

Dead_Time_Control_Process()

Description: The body diode of a synchronous rectifier (synchro) acts as a conventional diode when the synchro is
off. During this time, the power dissipated by the body diode is approximately 0.7 V x IOUT. For
example, at an output current of 20 A, the power dissipated in the diode is approximately 14 W. This
is in stark contrast to the power dissipated by the synchro when on; assuming a 10 mΩ RDSON, the
synchro power dissipation is 10 mΩ x (20 A)^2 = 4 W. For high-efficiency operation, the “free-
wheeling” time of this body diode must be minimized. The Dead_Time_Control_Process() is a
feedback algorithm for a half-bridge converter that adjusts synchronous rectifier “free-wheeling”
(dead) time by writing to the PH timing control registers to minimize the average value of
compensated duty cycle ratio u(n) for any given load. This is a valid method to optimize dead time
since u(n) increases with losses at a given load point.

Entry Parameters: Average u(n)

Exit Parameters: PH3, PH4 trailing-edge time registers

Indirect_Soft_Transition_Process()

Description: This process regulates the linearity of the soft-start ramp. Closed-loop linearity control is
implemented by measuring the average slope of the soft-start ramp, then comparing it to a slope
reference. Software adjusts the REFDAC to drive the difference between the two control terms to
zero.

Entry Parameters: Average VOUT, slope reference term (single byte)

Exit Parameters: REFDAC variable update

Functional Flowchart:

Figure 26. Soft_Transition_Process Flowchart

Digitize
and

Filter Output
Voltage (VOUT)

RAMP =
dVOUT/dt

RAMP >
Slope ref?

Indirect_Soft_Transition_
Process

YES

Decrement
REFDAC variable

RAMP <
Slope ref?

YES

Increment
REFDAC variable

NO

NO

End of Function

Write REFDAC
variable to
REFDAC

AN271

Rev. 0.3 47

mAdvFilterProcess(operand, n)

Description: The mAdvFilterProcess() is an advanced discrete time filter algorithm that processes the operand
with cutoff frequency determined by n, where n is a value between 0 and 8 inclusive.

Entry Parameters: Operand, n

Exit Parameters: Filtered operand

mFilterProcess(operand)

Description: mFilterProcess() is an advanced discrete time filter algorithm that processes the operand with fixed
cutoff frequency determined by the associated default macro (#define statement).

Entry Parameters: Operand

Exit Parameters: Filtered operand

mIsInputReady(operand)

Description: This single-bit test checks for ADC0 data conversion complete for the specified channel (operand).
This function returns a “1” if new data is available or a “0” if conversion is not yet complete. This is not
a C-language function call; it is a single-bit test.

Entry Parameters: None

Exit Parameters: 1 if new data is available, 0 if new data is not available.

mIsUARTRxRdy()

Description: This single-bit test checks the Si825x UART receive buffer status soft flag for new receive data
available. This function returns a “1” if new data is available or a “0” if conversion is not yet complete.
This is not a C-language function call; it is a single-bit test.

Entry Parameters: None

Exit Parameters: 1 if new data is available, 0 if new data is not available.

mResetInput(operand)

Description: This function clears the data accumulation in the filter associated with the operand. It is electrically
equivalent to shorting the capacitor in a simple RC low-pass filter.

Entry Parameters: Operand

Exit Parameters: None

mUINClearWtDog()

Description: The isolated communications (UART) timer runs as a background task. Its function is to assert a fault
flag if isolated communication ceases for a time period greater than or equal to the watchdog timeout
period. This function effectively “strobes” the watchdog, resetting its timeout period.

Entry Parameters: None

Exit Parameters: Watchdog timer period reloaded

AN271

48 Rev. 0.3

mUINDone()

Description: This function is a handshake (internal state flag) indicating that the current packet processing has
been completed and processing of the next packet can commence.

Entry Parameters: None

Exit Parameters: None

mUINIsWtDogErr()

Description: This function tests the isolated communications (UART) watchdog error flag and returns a 0 if the
watchdog has not timed-out (indicating no error); or a “1” indicating the watchdog has timed-out and
an error is present.

Entry Parameters: None

Exit Parameters: Fault flag update: “0” if no watchdog error (normal operation) or “1” if the watchdog has timed-
out (error condition).

mUINPacketProcess()

Description: This function is the isolated communication (UART) data packet processor to guarantee data delivery
and integrity and guarantees that data communication faults are recoverable within reason.

 For the purposes of the kernel, the Si825x is operated as a client, and the primary-side MCU is
operated as the server. Both sides of the communication channel are watchdog-protected. These
watchdogs ensures that data is transmitted in a timely manner.
 Data integrity is ensured by the 1s complement checksum, which calculates the sum of the data in

the string.
 Data recoverability is provided by packet stuffing based on a robust protocol that provides

deterministic start and stop states.

Entry Parameters: None

Exit Parameters: None

Packet Format: Contact Silicon Labs Power Applications support for information.

mUINWtDogProcess()

Description: This function performs the background processing tasks for the isolated communications (UART)
watchdog timer. It updates internal counters based on data received by the UART to ensure all
packets have been received within the appropriate time. Counters are managed such that no
overflow occurs if serial communications are operating normally, but that overflow does occur if a
communication fault is present. This is an internal process that should be called periodically.

Entry Parameters: None

Exit Parameters: None

AN271

Rev. 0.3 49

Transient_Process()

Description: This function closes a second software loop around the DSP Filter Engine coefficients to
aggressively control transient events. During a transient, the coefficients will be modified to reduce
the transient magnitude and pull in the transient settling time.

Entry Parameters: ADC1DAT

Exit Parameters: None

AN271

50 Rev. 0.3

APPENDIX B—HEADER FILE

The header (.h) file contains initialization data for kernel hardware and software parameters (H = hardware
S = software).

Parameter H/S Description

KERNEL_POWER_CONFIG H Network interface power configuration byte

KERNEL_WRITE_PROTECT H Network interface write-protect byte

KERNEL_MODE S Network interface exponent for VOUT format command

KERNEL_VOUT S Network interface VOUT command

KERNEL_VOUT_TRIM S Network interface VOUT trim command

KERNEL_VOUT_CAL S Network interface VOUT calibration command

KERNEL_VOUT_MAX S Network interface VOUT max command

KERNEL_VOUT_HIGH S Network interface VOUT margin high command

KERNEL_VOUT_LOW S Network interface VOUT margin low command

KERNEL_TRANS_RATE S Network interface soft-start transition phase rate command*

KERNEL_VOUT_DROOP S Network interface droop command*

KERNEL_VOUT_SCALE S Network interface VOUT scaling (gain calibration) command

KERNEL_VOUT_OFFSET S Network interface VOUT offset command*

KERNEL_POUT_MAX S Network interface maximum output power command*

KERNEL_MAX_DUTY S Network interface maximum duty cycle power command*

KERNEL_FREQUENCY H Network interface DPWM frequency (implemented as read-only)

KERNEL_VIN_ON S Network interface input voltage ON threshold command

KERNEL_VIN_OFF S Network interface input voltage OFF threshold command

KERNEL_INTERLEAVE S Network interface interleave command*

KERNEL_IOUT_SCALE S Network interface IOUT scaling (gain calibration) command

KERNEL_IOUT_OFFSET S Network interface IOUT offset command*

KERNEL_VFAN1 S Network interface fan#1 command–*

KERNEL_VFAN2 S Network interface fan#2 command*

KERNEL_VOUT_OV_FAULT S Network interface VOUT overvoltage fault command

KERNEL_VOUT_OV_CTL S Network interface VOUT overvoltage control parameter command

*Note: Provision, but not implemented.

AN271

Rev. 0.3 51

KERNEL_VOUT_OV_WARN S Network interface VOUT overvoltage warning command

KERNEL_VOUT_UV_WARN S Network interface VOUT undervoltage warning command

KERNEL_VOUT_UV_FAULT S Network interface VOUT undervoltage fault command

KERNEL_VOUT_UV_CTL S Network interface VOUT undervoltage control parameter command

KERNEL_IOUT_OC_FAULT S Network interface IOUT overcurrent fault command

KERNEL_IOUT_OC_CTL S Network interface IOUT overcurrent control parameter command

KERNEL_IOUT_OC_LV_FAULT S Network interface IOUT overcurrent and VOUT low voltage fault com-
mand*

KERNEL_IOUT_OC_LV_CTL S Network interface IOUT over current and VOUT low voltage control
parameter command*

KERNEL_IOUT_OC_WARN S Network interface IOUT over current warning command

KERNEL_IOUT_UC_FAULT S Not implemented

KERNEL_IOUT_UC_CTL S Not implemented

KERNEL_POUT_FAULT S Not implemented

KERNEL_POUT_CTL S Not implemented

KERNEL_TEMP_OT_FAULT S Network interface over temperature fault command

KERNEL_TEMP_OT_CTL S Network interface over temperature control parameter command

KERNEL_TEMP_OT_WARN S Network interface over temperature warning command

KERNEL_TEMP_UT_WARN S Network interface under temperature warning command

KERNEL_TEMP_UT_FAULT S Network interface under temperature fault command

KERNEL_TEMP_UT_CTL S Network interface under temperature control parameter command

KERNEL_VIN_OV_FAULT S Network interface VIN over voltage fault command

Parameter H/S Description

*Note: Provision, but not implemented.

AN271

52 Rev. 0.3

Variable H/S Description

KERNEL_VIN_OV_CTL S Network interface VIN over voltage control parameter command

KERNEL_VIN_OV_WARN S Network interface VIN over voltage warning command

KERNEL_VIN_UV_WARN S Network interface VIN under voltage warning command

KERNEL_VIN_UV_FAULT S Network interface VIN under voltage fault command

KERNEL_VIN_UV_CTL S Network interface VIN under voltage control parameter command

KERNEL_IIN_OC_FAULT S Not implemented

KERNEL_IIN_OC_CTL S Not implemented

KERNEL_IIN_OC_WARN S Not implemented

KERNEL_TON_DELAY S Network interface tON Delay command

KERNEL_TON_RISE S Network interface tON Rise command

KERNEL_TON_MAX S Network interface tON Max command

KERNEL_TON_MAX_CTL S Network interface tON Max control parameter command

KERNEL_TOFF_DELAY S Network interface tOFF Delay command

KERNEL_TOFF_FALL S Network interface tOFF Fall command

KERNEL_TOFF_MAX S Network interface tOFF Max command

KERNEL_SOFT_SLOPE S Network interface Soft Slope command

KERNEL_SOFT_SCALE S Network interface Soft Scale command

KERNEL_FILT_KP H DSP Filter kP (Proportional) coefficient variable

KERNEL_FILT_KI H DSP Filter kI (Integral) coefficient variable

KERNEL_FILT_KD H DSP Filter kD (Differentiator) coefficient variable

KERNEL_FILT_A0 H DSP Filter A0 (SINC filter gain) coefficient variable

KERNEL_FILT_A1 H DSP Filter A1 (LPF Pole 1) coefficient variable

KERNEL_FILT_A2 H DSP Filter A2 (LPF Pole 2) coefficient variable

KERNEL_FILT_A3 H DSP Filter A3 (LPF filter gain term) coefficient variable

KERNEL_FILT_DEC H DSP Filter Decimation coefficient variable

KERNEL_PIDCN H DSP Filter configuration byte

KERNEL_DPWM_DPWMCN H DPWM configuration byte

KERNEL_DPWM_SW_CYC H DPWM switching cycle length byte

KERNEL_DPWM_PH_POL H DPWM phase initial polarity byte

AN271

Rev. 0.3 53

KERNEL_DPWM_ENABX_OUT H DPWM ENABLE bypass data byte

KERNEL_DPWM_OCP_OUT H DPWM over current protection bypass data byte

KERNEL_DPWM_SWBP_OUT H DPWM software bypass data byte

KERNEL_DPWM_SWBP_OUTEN H DPWM software bypass enable byte

KERNEL_DPWM_PH1_CNTL0 H DPWM PH1 control register 0 byte

KERNEL_DPWM_PH1_CNTL1 H DPWM PH1 control register 1 byte

KERNEL_DPWM_PH1_CNTL2 H DPWM PH1 control register 2 byte

KERNEL_DPWM_PH1_CNTL3 H DPWM PH1 control register 3 byte

KERNEL_DPWM_PH2_CNTL0 H DPWM PH2 control register 0 byte

KERNEL_DPWM_PH2_CNTL1 H DPWM PH2 control register 1 byte

KERNEL_DPWM_PH2_CNTL2 H DPWM PH2 control register 2 byte

KERNEL_DPWM_PH2_CNTL3 H DPWM PH2 control register 3 byte

KERNEL_DPWM_PH3_CNTL0 H DPWM PH3 control register 0 byte

KERNEL_DPWM_PH3_CNTL1 H DPWM PH3 control register 1 byte

KERNEL_DPWM_PH3_CNTL2 H DPWM PH3 control register 2 byte

KERNEL_DPWM_PH3_CNTL3 H DPWM PH3 control register 3 byte

KERNEL_DPWM_PH4_CNTL0 H DPWM PH4 control register 0 byte

KERNEL_DPWM_PH4_CNTL1 H DPWM PH4 control register 1 byte

KERNEL_DPWM_PH4_CNTL2 H DPWM PH4 control register 2 byte

KERNEL_DPWM_PH4_CNTL3 H DPWM PH4 control register 3 byte

KERNEL_DPWM_PH5_CNTL0 H DPWM PH5 control register 0 byte

KERNEL_DPWM_PH5_CNTL1 H DPWM PH5 control register 1 byte

KERNEL_DPWM_PH5_CNTL2 H DPWM PH5 control register 2 byte

KERNEL_DPWM_PH5_CNTL3 H DPWM PH5 control register 3 byte

KERNEL_DPWM_PH6_CNTL0 H DPWM PH6 control register 0 byte

KERNEL_DPWM_PH6_CNTL1 H DPWM PH6 control register 1 byte

KERNEL_DPWM_PH6_CNTL2 H DPWM PH6 control register 2 byte

KERNEL_DPWM_PH6_CNTL3 H DPWM PH6 control register 3 byte

KERNEL_DPWM_DPWMTLLT0 H DPWM u(n) lower limit control byte0

Variable H/S Description

AN271

54 Rev. 0.3

KERNEL_DPWM_DPWMTLGT0 H DPWM u(n) upper limit control byte0

KERNEL_DPWM_DPWMTLLT1 H DPWM u(n) lower limit control byte1

KERNEL_DPWM_DPWMTLGT1 H DPWM u(n) upper limit control byte1

KERNEL_DPWM_DPWMTLLT2 H DPWM u(n) lower limit control byte2

KERNEL_DPWM_DPWMTLGT2 H DPWM u(n) upper limit control byte2

KERNEL_DPWM_DPWMTLLT3 H DPWM u(n) lower limit control byte3

KERNEL_DPWM_DPWMTLGT3 H DPWM u(n) upper limit control byte3

KERNEL_DPWM_DPWMULOCK H DPWM symmetry lock control byte

KERNEL_DPWM_DPWMTLCD0 H DPWM u(n) trim correction data byte0

KERNEL_DPWM_DPWMTLCD1 H DPWM u(n) trim correction data byte1

KERNEL_DPWM_DPWMTLCD2 H DPWM u(n) trim correction data byte2

KERNEL_DPWM_DPWMTLCD3 H DPWM u(n) trim correction data byte3

KERNEL_OCP_IPKCN H Peak current detector control byte

KERNEL_OCP_LEBCN H Peak current leading-edge blanking time control byte

KERNEL_OCP_OCPCN H Peak current detector over-current protection counter control byte

KERNEL_GAIN_RD_CAL_IIN S ADC0 gain supply input current read calibration

KERNEL_OFFSET_RD_CAL_IIN S ADC0 offset supply input current read calibration

KERNEL_GAIN_WR_CAL_IIN S ADC0 gain supply input current write calibration

KERNEL_OFFSET_WR_CAL_IIN S ADC0 offset supply input current write calibration

KERNEL_GAIN_RD_CAL_IOUT S ADC0 gain supply output current read calibration

KERNEL_OFFSET_RD_CAL_IOUT S ADC0 offset supply output current read calibration

KERNEL_GAIN_WR_CAL_IOUT S ADC0 gain supply output current write calibration

KERNEL_OFFSET_WR_CAL_IOU
T

S ADC0 offset supply output current write calibration

KERNEL_GAIN_RD_CAL_TEMP1 S ADC0 gain supply temperature read calibration

KERNEL_OFFSET_RD_CAL_TEM
P1

S ADC0 offset temperature read calibration

KERNEL_GAIN_WR_CAL_TEMP1 S ADC0 gain temperature write calibration

KERNEL_OFFSET_WR_CAL_TEM
P1

S ADC0 offset temperature write calibration

Variable H/S Description

AN271

Rev. 0.3 55

APPENDIX C—RECOMMENDED C-CODE LEARNING RESOURCES

VTC C Programming DVD course ($99 complete—buy online at http://www.vtc.com/)
The Complete C Reference 4th Edition, Herbert Schildt, Osborne/McGraw Hill ISBN 0-07-212124-6

AN271

56 Rev. 0.3

APPENDIX D—SYSTEM MANAGEMENT PROCESSOR PERIPHERAL INITIALIZATION

Peripheral Initialization State

VDD Monitor Enabled

Watchdog Timer Disabled

Oscillator Internal Oscillator enabled/selected. F = 24.5 MHz

PLL Enabled

P0.0 SCL

P0.1 SDA

P0.2 SMB Alert

P0.3 General purpose digital I/O*

P0.4 UART TX

P0.5 UART RX

P0.6 General purpose digital I/O*

P0.7 ENABLE Input

P1.0 General purpose analog/digital I/O*

P1.1 General purpose analog/digital I/O*

P1.2 ADC0 input (average output current)

P1.3 General purpose analog/digital I/O*

P1.4 General purpose analog/digital I/O*

P1.5 General purpose analog/digital I/O*

P1.6 General purpose analog/digital I/O*

P1.7 C2D

Port0 I/O Bits 7, 6, 4 = push/pull. Others = open drain

Port0 Skip Bits 7, 6 skipped

Port0 Data 0xFF

Port1 I/O Bit 6 = push/pull. Others = open drain

Port1 Skip Bits 7 through 0 skipped

Port1 Data 0xFF

AN271

Rev. 0.3 57

ADC0 Enabled, dual tracking mode (2 cycles), Auto-sequencing
disabled, VREF enabled, AIN2 threshold detector
enabled.

Timer2 Enabled, split (dual 8-bit) mode, interrupts disabled. Low
byte = reload value for ADC0, high byte = reload value for
general purpose counter. FCLK = SYSCLK/12

UART0 RX enabled. RX routed to P0.5, Tx routed to P0.7,
UART clk = TIMER1 (clocked by SYSCLK).

ENABLE Input Disabled

Timer0 (SMBUs clock) 8-bit auto reload mode

SMBus Enabled, slave mode, clock from Timer0

Reset Source Power-on RESET flag

*Note: Connected to switches, LEDs, and external connector on Si825x target board.

Peripheral Initialization State

AN271

58 Rev. 0.3

System Management Processor Peripheral Initialization Code
(From File DPSK_kernel.c)

// Init the kernel for operation

void Kernel_Init(void)

{

unsigned char _index;

//**

VDM0CN |= 0x80; // Enable the monitor

//**

//**

PCA0MD = PCA0MD & 0xBF; // Disable the WDT

//**

//**

// Oscillator related init

OSCICN = 0x87; // Init the clocks, 24.5MHz

// PLLCN = 0xC0;

PLLCN = 0xC4;

CLKSEL = 0x00;

//**

//**

// General port init

// P0.0 SCL

// P0.1 SDA

// P0.2 SMBA

// P0.3 J8, pin 1

// P0.4 UART (TX)

// P0.5 UART (RX)

// P0.6 Green LED

// P0.7 Enable

// P1.0 J8, pin 5

// P1.1 J8, pin 6

// P1.2 Average Iout

// P1.3 J8, pin 2

// P1.4 Switch (S4)

// P1.5 Switch (S5)

// P1.6 Red LED

// P1.7 C2D

P0MDOUT = 0xD0; // 1101 0000

P1MDOUT = 0x40; // 0100 0000

P0SKIP = 0xCC; // 1100 1100

P1SKIP = 0xFF; // 1111 1111

P1MDIN = 0xFB; // 1111 1011

P0 = 0xFF; // 1111 1111

P1 = 0xFF; // 1111 1111

XBR0 = 0x05; // 0000 0101

XBR1 = 0xC0; // 1100 0000

//**

//**

// Init ADC0 dependencies

ADC0CN = 0x00;

ADC0TK = 0xFF; // Dual-Tracking (2 cycles)

// ADC0TK = 0xF8;

ADC0CF = ((24500000/2500000) << 3); // Fclk/CLKSAR - 1 << 3

REF0CN = 0x07; // Enable Voltage Reference and Temp Sensor

ADC0CN = 0x84; // Enable ADC0,

ADC0STA0 = 0; // Remove any pending conversions

ADC0STA1 = 0;

mAINxDone(); // Clear the end of sample status

AN271

Rev. 0.3 59

// EIE2 |= 0x02; // Enable threshold detection for AIN2

ADC0LM0 &= ~0x04;

bPeakCurrent = 0;

//**

//**

// Init Timer 2

TMR2CN = 0x08; // Stop Timer 2; Clear TF2H and TF2L; disable low ;enable split mode;

CKCON &= ~0x30; // Timer2 low and high bytes use SYSCLK/12 as their timebase.

TMR2RLL = -(24500000/63912/12); // Initialize the low byte reload value for ADC0

TMR2RLH = -(24500000/10000/12); // Initialize the high byte reload value for a general counter

TMR2L = 0xFE; // Set to reload

TMR2H = 0xFE; // Set to reload

EIE2 &= ~0x20; // Disable Timer2 interrupts (should not be enabled anyway)

TMR2CN |= 0x04; // Start Timer2

//**

//**

// Init UART dependencies

XBR0 |= 0x01; // Enable the UART in the crossbar

SCON0 = 0x10; // ignor stop, clear flags

TMOD &= ~0xF0; // TMOD: timer 1 in 8-bit autoreload

TMOD |= 0x20;

TH1 = -(24500000/115200/2); // Set Timer1 reload value

CKCON |= 0x08; // Timer 1 clocked from system clock (prescaler used by Timer 0 only)

TL1 = 0xFF; // initialize timer1 to reload value

TR1 = 1; // START Timer1

mUINReset(); // Set the initial start state

//**

//**

// Disable the ENABLE signal

IT01CF = 0x88;

TCON &= 0xF0;

TCON |= 0x04;

IE1 = 0;

//**

//**

TMOD &= ~0x0F; // TMOD: timer 0 in 8-bit autoreload

TMOD |= 0x02;

TH0 = -(24500000/100000); // Set Timer0 reload value

CKCON |= 0x04; // Timer 0 clocked from system clock (prescaler used by Timer 0 only)

TL0 = 0xFF; // initialize timer1 to reload value

TR0 = 1; // START Timer1

SMB0CF = 0x1C; // Enable slave mode, Tmr0 is the clock

SI = 0; // Clear SMBus Interrupt Flag

SMB0CF |= 0x80; // Enable SMBus;

//**

//**

RSTSRC = 0x02; // Set power monitor as a reset

//**

AN271

60 Rev. 0.3

DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.2

Added "Appendix D—System Management
Processor Peripheral Initialization" on page 56.

Revision 0.2 to Revision 0.3
Updated "Contact Information" on page 62.
 Updated disclaimer.

AN271

Rev. 0.3 61

NOTES:

AN271

62 Rev. 0.3

CONTACT INFORMATION
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
The sale of this product contains no licenses to Power-One’s intellectual property. Contact Power-One, Inc. for appropriate licenses.

http://www.silabs.com

	1. Introduction
	Figure 1. Si825x System with K2.0 Installed
	1.1. Differences from Kernel Version 1.0
	1.2. System States of a Typical Power Systems
	Table 1. Typical Power System States and K2.0 Support Summary
	Figure 2. Top-Level System State Diagram

	2. Kernel Description
	2.1. Structure
	Figure 3. Kernel Software Structure
	2.1.1. K2.0 File Organization
	Figure 4. Kernel File Organization
	Table 2. Kernel Process State Definitions
	Table 3. Process States
	Table 4. Si8250K2.0 Kernel Files

	3. Porting the K2.0 Kernel to the End Application
	3.1. Compensator Design
	3.2. Timing Design
	3.3. System Processor Configuration
	3.4. Adding Proprietary Code
	3.5. Compiling, Loading and Debugging Code

	4. Kernel Process State Descriptions
	4.1. Kernel Process (Kernel_Process)
	4.1.1. Description and Operation
	Figure 5. Kernel_Process Flowchart

	4.2. Kernel Initialization (Kernel_Init)
	4.2.1. Description and Operation
	Figure 6. Kernel_Init Flowchart

	4.3. Kernel High Level Initialization (Kernel_High_Level_Init_Process)
	4.3.1. Description and Operation
	Figure 7. Kernel_High_Level_Init Flowchart

	4.4. Kernel Validation Initialization (Kernel_Validation_Init_Process)
	4.4.1. Description and Operation
	Figure 8. Kernel_Validation_Init_Process Flowchart

	4.5. Kernel Validation Process (Kernel_Validation_Process)
	4.5.1. Description and Operation
	Figure 9. Kernel_Validation_Process Flowchart

	4.6. Kernel Soft Start Initialization Process (Kernel_Soft_Start_Init_Process)
	4.6.1. Description and Operation
	Figure 10. Soft_Start_Init_Process Flowchart

	4.7. Kernel Soft Start Warm-up Process (Kernel_Soft_Start_WarmUp_Process)
	4.7.1. Description and Operation
	Figure 11. Kernel_Soft_Start_WarmUp_Process Flowchart

	4.8. Kernel Soft Start Process (Kernel_Soft_Start_Process)
	4.8.1. Description and Operation
	Figure 12. Kernel_Soft_Start_Process Flowchart

	4.9. Kernel Regulation Initialization Process (Kernel_Regulation_Init_Process)
	4.9.1. Description and Operation
	Figure 13. Kernel_Regulation_Init_Process Flowchart

	4.10. Kernel Transition Process (Kernel_Transition_Process)
	4.10.1. Description and Operation
	Figure 14. Kernel_Transition_Process Flowchart

	4.11. Kernel Regulation Process (Kernel_Regulation_Process)
	4.11.1. Description and Operation
	Figure 15. Kernel_Regulation_Process Flowchart

	4.12. Kernel Stop Initialization Process (Kernel_Stop_Init)
	4.12.1. Description and Operation
	Figure 16. Kernel_Stop_Init_Process Flowchart

	4.13. Kernel Soft Stop Process (Kernel_Soft_Stop)
	4.13.1. Description and Operation
	Figure 17. Kernel_Soft_Stop_Process Flowchart

	4.14. Kernel Disabled Process (Kernel_Disabled_Process)
	4.14.1. Description and Operation
	Figure 18. Kernel_Disabled_Process Flowchart

	4.15. Kernel Lockout Process (Kernel_Lockout_Process)
	4.15.1. Description and Operation
	Figure 19. Kernel_Lockout_Process Flowchart

	4.16. Kernel Fault Recovery Initialization Process (Kernel_Recovery_Init_Process)
	4.16.1. Description and Operation
	Figure 20. Fault Recovery Decision Cell
	Figure 21. Kernel_Fault_Recovery_Init_Process Flowchart

	4.17. Kernel Fault Recovery Process (Kernel_Recovery_Process)
	4.17.1. Description and Operation
	Figure 22. Kernel_Fault_Recovery_Process Flowchart

	4.18. Kernel State Control Process (Kernel_State_Control_Process)
	4.18.1. Description and Operation
	Figure 23. Kernel_State_Control_Process Flowchart

	4.19. Kernel Threshold Process (Kernel_Parameter_Threshold_Process)
	4.19.1. Description and Operation
	Figure 24. Example Threshold_Process Parameter Flowchart

	Appendix A-Library Functions
	Table 5. Kernel Functions Summary
	Figure 25. Balance_Primary_Process Flowchart
	Figure 26. Soft_Transition_Process Flowchart

	Appendix B-Header File
	Appendix C-Recommended C-code Learning Resources
	Appendix D-System Management Processor Peripheral Initialization
	Document Change List
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

