
a

W5.0
Assembler and Preprocessor Manual

 Revision 3.1, August 2008

Part Number:
82-000420-04

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2008 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, the CROSSCORE logo, VisualDSP++,
SHARC, TigerSHARC, Blackfin, and EZ-KIT Lite are registered trade-
marks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 Assembler and Preprocessor Manual iii

CONTENTS

PREFACE

Purpose ... xiii

Intended Audience .. xiii

Manual Contents ... xiv

What’s New in this Manual .. xiv

Technical or Customer Support ... xv

Supported Processors ... xv

Product Information .. xvi

Analog Devices Web Site .. xvi

VisualDSP++ Online Documentation xvii

Technical Library CD .. xvii

Notation Conventions .. xviii

ASSEMBLER

Assembler Guide ... 1-2

Assembler Overview .. 1-3

Writing Assembly Programs ... 1-4

Program Content .. 1-6

Assembly Instructions ... 1-6

CONTENTS

iv VisualDSP++ 5.0 Assembler and Preprocessor Manual

Assembler Directives ... 1-7

Preprocessor Commands ... 1-7

Program Structure .. 1-8

Code File Structure for SHARC Processors 1-11

LDF for SHARC Processors .. 1-12

Code File Structure for TigerSHARC Processors 1-14

LDF for TigerSHARC Processors 1-15

Code File Structure for Blackfin Processors 1-18

LDF for Blackfin Processors .. 1-19

Program Interfacing Requirements 1-21

Using Assembler Support for C Structs 1-22

Preprocessing a Program .. 1-25

Using Assembler Feature Macros ... 1-27

-D__VISUALDSPVERSION__ Predefined Macro (Assembler) 1-32

Generating Make Dependencies .. 1-34

Reading a Listing File .. 1-35

Enabling Statistical Profiling for Assembly Functions 1-35

Assembler Syntax Reference .. 1-38

Assembler Keywords and Symbols ... 1-39

Assembler Expressions ... 1-52

Assembler Operators ... 1-53

Numeric Formats .. 1-58

Representation of Constants in Blackfin 1-58

Fractional Type Support .. 1-59

VisualDSP++ 5.0 Assembler and Preprocessor Manual v

CONTENTS

1.31 Fracts .. 1-60

1.0r Special Case ... 1-61

Fractional Arithmetic .. 1-61

Mixed Type Arithmetic ... 1-61

Comment Conventions ... 1-62

Conditional Assembly Directives .. 1-62

C Struct Support in Assembly Built-In Functions 1-65

OFFSETOF Built-In Function .. 1-65

SIZEOF Built-In Function .. 1-65

Struct References ... 1-66

Assembler Directives .. 1-69

.ALIGN, Specify an Address Alignment 1-74

.ALIGN_CODE, Specify an Address Alignment 1-76

.ASCII .. 1-78

.BYTE, Declare a Byte Data Variable or Buffer 1-79

ASCII String Initialization Support 1-81

.EXTERN, Refer to a Globally Available Symbol 1-83

.EXTERN STRUCT, Refer to a Struct Defined Elsewhere . 1-84

.FILE, Override the Name of a Source File 1-86

.FILE_ATTR, Create an Attribute in the Object File 1-87

.GLOBAL, Make a Symbol Available Globally 1-88

.IMPORT, Provide Structure Layout Information 1-90

.INC/BINARY, Include Contents of a File 1-93

.LEFTMARGIN, Set the Margin Width of a Listing File 1-94

CONTENTS

vi VisualDSP++ 5.0 Assembler and Preprocessor Manual

.LIST/.NOLIST, Listing Source Lines and Opcodes 1-95

.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes 1-96

.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization
Files .. 1-97

.LIST_DEFTAB, Set the Default Tab Width for Listings ... 1-98

.LIST_LOCTAB, Set the Local Tab Width for Listings 1-100

.LIST_WRAPDATA/.NOLIST_WRAPDATA 1-101

.LONG, Defines and initializes 4-byte data objects 1-102

.MESSAGE, Alter the Severity of an Assembler Message .. 1-103

.NEWPAGE, Insert a Page Break in a Listing File 1-107

.PAGELENGTH, Set the Page Length of a Listing File 1-108

.PAGEWIDTH, Set the Page Width of a Listing File 1-109

.PORT, Legacy Directive ... 1-111

.PRECISION, Select Floating-Point Precision 1-112

.PREVIOUS, Revert to the Previously Defined Section ... 1-114

.PRIORITY, Allow Prioritized Symbol Mapping in Linker 1-115

Linker Operation .. 1-116

.REFERENCE, Provide Better Info in an X-REF File 1-118

.RETAIN_NAME, Stop Linker from Eliminating Symbol 1-118

.ROUND_, Select Floating-Point Rounding 1-119

.SECTION, Declare a Memory Section 1-122

Common .SECTION Attributes 1-122

DOUBLE* Qualifiers ... 1-123

TigerSHARC-Specific Qualifiers 1-124

SHARC-Specific Qualifiers ... 1-125

VisualDSP++ 5.0 Assembler and Preprocessor Manual vii

CONTENTS

Initialization Section Qualifiers 1-125

.SEGMENT and .ENDSEG, Legacy Directives 1-128

.SEPARATE_MEM_SEGMENTS 1-128

.SET, Set a Symbolic Alias ... 1-129

.SHORT, Defines and initializes 2-byte data objects 1-129

.STRUCT, Create a Struct Variable 1-130

.TYPE, Change Default Symbol Type 1-134

.VAR, Declare a Data Variable or Buffer 1-135

.VAR and ASCII String Initialization Support 1-138

.WEAK, Support Weak Symbol Definition and Reference 1-140

Assembler Command-Line Reference ... 1-141

Running the Assembler .. 1-142

Assembler Command-Line Switch Descriptions 1-144

-align-branch-lines .. 1-148

-anomaly-detect [id1[,id2...]] .. 1-149

-anomaly-warn {id1[,id2]|all|none} 1-149

-anomaly-workaround [id] .. 1-150

-char-size-8 ... 1-150

-char-size-32 ... 1-150

-char-size-any .. 1-151

-default-branch-np .. 1-151

-default-branch-p .. 1-151

-Dmacro[=definition] .. 1-151

-double-size-32 ... 1-152

CONTENTS

viii VisualDSP++ 5.0 Assembler and Preprocessor Manual

-double-size-64 ... 1-152

-double-size-any ... 1-153

-expand-symbolic-links ... 1-153

-expand-windows-shortcuts ... 1-153

-file-attr attr[=val] .. 1-153

-flags-compiler .. 1-153

User-Specified Defines Options 1-154

Include Options ... 1-155

 -flags-pp -opt1 [,-opt2...] ... 1-155

-g ... 1-156

WARNING ea1121: Missing End Labels 1-156

-h[elp] .. 1-157

-i .. 1-157

-l filename .. 1-158

-li filename ... 1-159

-M ... 1-159

-MM .. 1-159

-Mo filename .. 1-160

-Mt filename .. 1-160

-micaswarn ... 1-160

-no-source-dependency ... 1-160

-no-anomaly-detect [id1[,id2...]] 1-161

-no-anomaly-workaround [id1[,id2...]] 1-161

-no-expand-symbolic-links .. 1-161

VisualDSP++ 5.0 Assembler and Preprocessor Manual ix

CONTENTS

-no-expand-windows-shortcuts .. 1-162

-no-temp-data-file ... 1-162

-o filename ... 1-162

-pp ... 1-163

-proc processor .. 1-163

-save-temps ... 1-164

-si-revision version .. 1-164

-sp .. 1-165

-stallcheck ... 1-165

-v[erbose] ... 1-165

-version .. 1-165

-w ... 1-166

-Werror number[,number] .. 1-166

-Winfo number[,number] ... 1-166

-Wno-info .. 1-166

-Wnumber[,number] ... 1-166

-Wsuppress number[,number] ... 1-167

-Wwarn number[,number] .. 1-167

-Wwarn-error .. 1-167

Specifying Assembler Options in VisualDSP++ 1-168

PREPROCESSOR

Preprocessor Guide ... 2-2

Writing Preprocessor Commands ... 2-3

Header Files and the #include Command 2-4

CONTENTS

x VisualDSP++ 5.0 Assembler and Preprocessor Manual

System Header Files .. 2-5

User Header Files ... 2-5

Sequence of Tokens .. 2-6

Include Path Search .. 2-7

Writing Macros ... 2-7

Macro Definition and Usage Guidelines 2-9

Examples of Multi-Line Code Macros with Arguments 2-12

Debugging Macros ... 2-13

Using Predefined Preprocessor Macros 2-15

-D__VISUALDSPVERSION____ Predefined Macro (Preprocessor)
2-19

Specifying Preprocessor Options .. 2-20

Preprocessor Command Reference ... 2-21

Preprocessor Commands and Operators 2-21

#define ... 2-23

Variable-Length Argument Definitions 2-24

#elif ... 2-26

#else ... 2-27

#endif .. 2-28

#error ... 2-29

#if .. 2-30

#ifdef ... 2-31

#ifndef ... 2-32

#include ... 2-33

#line .. 2-35

VisualDSP++ 5.0 Assembler and Preprocessor Manual xi

CONTENTS

#pragma ... 2-36

#undef .. 2-37

#warning .. 2-38

(Argument) .. 2-39

(Concatenate) .. 2-41

? (Generate a unique label) .. 2-42

Preprocessor Command-Line Reference 2-44

Running the Preprocessor .. 2-44

Preprocessor Command-Line Switches 2-45

-cpredef .. 2-47

-cs! ... 2-48

-cs/* .. 2-48

-cs// .. 2-49

-cs{ ... 2-49

-csall ... 2-49

-Dmacro[=def] ... 2-49

-h[elp] .. 2-49

-i .. 2-50

-i .. 2-50

-I- ... 2-51

-M .. 2-52

-MM .. 2-52

-Mo filename .. 2-52

-Mt filename ... 2-53

CONTENTS

xii VisualDSP++ 5.0 Assembler and Preprocessor Manual

-o filename ... 2-53

-stringize .. 2-53

-tokenize-dot .. 2-53

-Uname .. 2-54

-v[erbose] ... 2-54

-version .. 2-54

-w .. 2-54

-Wnumber ... 2-55

-warn ... 2-55

INDEX

VisualDSP++ 5.0 Assembler and Preprocessor Manual xiii

Preface

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
digital signal processing (DSP) applications.

Purpose
The VisualDSP++ 5.0 Update 4 Assembler and Preprocessor Manual con-
tains information about the assembler preprocessor utilties for the
following Analog Devices, Inc. processor families—SHARC®
(ADSP-21xxx) processors, TigerSHARC® (ADSP-TSxxx) processors, and
Blackfin® (ADSP-BFxxx) processors.

The manual describes how to write assembly programs for these processors
and provides reference information about related development software.
It also provides information on new and legacy syntax for assembler and
preprocessor directives and comments, as well as command-line switches.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices

Manual Contents

xiv VisualDSP++ 5.0 Assembler and Preprocessor Manual

processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference and programming reference
manuals) that describe your target architecture.

Manual Contents
The manual consists of:

• Chapter 1, “Assembler”
Provides an overview of the process of writing and building
assembly programs. It also provides information about assembler
switches, expressions, keywords, and directives.

• Chapter 2, “Preprocessor”
Provides procedures for using preprocessor commands within
assembly source files as well as the preprocessor’s command-line
interface options and command sets.

What’s New in this Manual
The VisualDSP++ 5.0 Update 4 Assembler and Preprocessor Manual
documents assembler support for all currently available Analog Devices’
SHARC, TigerSHARC and Blackfin processors. This edition includes
modifications due to new processors and fixes to reported problems.

Refer to VisualDSP++ 5.0 Product Release Bulletin for information on all
new and updated VisualDSP++® 5.0 features and other release
information.

VisualDSP++ 5.0 Assembler and Preprocessor Manual xv

Preface

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
For a complete list of processors supported by VisualDSP++ 5.0, refer to
VisualDSP++ online Help.

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Product Information

xvi VisualDSP++ 5.0 Assembler and Preprocessor Manual

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals. MyAn-
alog.com provides access to books, application notes, data sheets, code
examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

VisualDSP++ 5.0 Assembler and Preprocessor Manual xvii

Preface

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools documentation. You
can search easily across the entire VisualDSP++ documentation set for any
topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

Technical Library CD
The technical library CD contains seminar materials, product highlights,
a selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC, TigerSHARC, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

File Description

.chm Help system files and manuals in Microsoft help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet license tools software
documentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/

Notation Conventions

xviii VisualDSP++ 5.0 Assembler and Preprocessor Manual

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in in bold style reference sections indicate the location of an item
within the VisualDSP++ environment’s menu system (for example, the
Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

VisualDSP++ 5.0 Assembler and Preprocessor Manual xix

Preface

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description

Notation Conventions

xx VisualDSP++ 5.0 Assembler and Preprocessor Manual

VisualDSP++ 5.0 Assembler and Preprocessor Manual xxi

Preface

Notation Conventions

xxii VisualDSP++ 5.0 Assembler and Preprocessor Manual

VisualDSP++ 5.0 Assembler and Preprocessor Manual xxiii

Preface

Notation Conventions

xxiv VisualDSP++ 5.0 Assembler and Preprocessor Manual

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-1

Assembler

1 ASSEMBLER

This chapter provides information on how to use the assembler to develop
and assemble programs for SHARC (ADSP-21xxx), TigerSHARC
(ADSP-TSxxx), and Blackfin (ADSP-BFxxx) processors.

The chapter contains the following sections:

• “Assembler Guide” on page 1-2
Describes how to develop new programs using the processor’s
assembly language

• “Assembler Syntax Reference” on page 1-38
Provides the assembler rules and conventions of syntax used to
define symbols (identifiers), expressions, and to describe different
numeric and comment formats

• “Assembler Command-Line Reference” on page 1-141
Provides reference information on the assembler’s switches and
conventions

The code examples in this manual have been compiled using
VisualDSP++ 5.0. The examples compiled with other versions of
VisualDSP++ may result in build errors or different output
although the highlighted algorithms stand and should continue to
stand in future releases of VisualDSP++.

Assembler Guide

1-2 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Assembler Guide
In VisualDSP++ 5.0, you can run the assembler drivers for each processor
family from the VisualDSP++ integrated debugging and development
environment (IDDE) or from an operating system command line. The
assembler processes assembly source, data, and header files to produce an
object file. Assembler operations depend on two types of controls:
assembler directives and assembler switches.

VisualDSP++ 5.0 supports the following assembler drivers:

• easm21k.exe (for SHARC processors)

• easmts.exe (for TigerSHARC processors)

• easmblkfn.exe (for Blackfin processors)

This section describes how to develop new programs in the Analog
Devices processor assembly language. It provides information on how to
assemble your programs from the operating system’s command line.

Software developers using the assembler should be familiar with these
topics:

• “Writing Assembly Programs” on page 1-4

• “Using Assembler Support for C Structs” on page 1-22

• “Preprocessing a Program” on page 1-25

• “Using Assembler Feature Macros” on page 1-27

• “Generating Make Dependencies” on page 1-34

• “Reading a Listing File” on page 1-35

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-3

Assembler

• “Enabling Statistical Profiling for Assembly Functions” on
page 1-35

• “Specifying Assembler Options in VisualDSP++” on page 1-168

For information about a processor’s architecture, including the instruction
set used when writing assembly programs, refer to the Hardware Reference
and the Programming Reference for the appropriate processor.

Assembler Overview
The assembler processes data from assembly source (.asm), data (.dat),
and header (.h) files to generate object files in executable and linkable
format (ELF), an industry-standard format for binary object files. The
object file has a.doj extension.

In addition to the object file, the assembler can produce a listing file
(.lst) that shows the correspondence between the binary code and the
source.

Assembler switches are specified from the VisualDSP++ IDDE or from the
command line used to invoke the assembler. These switches allow you to
control the assembly process of source, data, and header files. Use these
switches to enable and configure assembly features, such as search paths,
output file names, and macro preprocessing. See “Assembler Com-
mand-Line Reference” on page 1-141.

You can also set assembler options via the Assemble page of the Project
Options dialog box in VisualDSP++. (See “Specifying Assembler Options
in VisualDSP++” on page 1-168).

Assembler Guide

1-4 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Writing Assembly Programs
Assembler directives are coded in assembly source files. The directives
allow you to define variables, set up hardware features, and identify pro-
gram sections for placement within processor memory. The assembler uses
directives for guidance as it translates a source program into object code.

Write assembly language programs using the VisualDSP++ editor or any
editor that produces text files. Do not use a word processor that embeds
special control codes in the text. Use an .asm extension to source file
names to identify them as assembly source files.

Figure 1-1 shows a graphical overview of the assembly process. The figure
shows the preprocessor processing the assembly source (.asm) and header
(.h) files.

Assemble your source files from the VisualDSP++ environment or using
any mechanism, such as a batch file or makefile, that supports invoking an
appropriate assembler driver with a specified command-line command.
By default, the assembler processes an intermediate file to produce a
binary object file (.doj) and an optional listing file (.lst).

Object files produced by the processor assembler may be used as input to
the linker and archiver. You can archive the output of an assembly process
into a library file (.dlb), which can then be linked with other objects into
an executable. Use the linker to combine separately assembled object files
and objects from library files to produce an executable file. For more
information about the linker and archiver, refer to the VisualDSP++ 5.0
Linker and Utilities Manual.

A binary object file (.doj) and an optional listing (.lst) file are final
results of the successful assembly.

The assembler listing file is a text file read for information on the results
of the assembly process. The listing file also provides information about
the imported c data structures. The listing file tells which imports were
used within the program, followed by a more detailed section. (See the

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-5

Assembler

.IMPORT directive on page 1-90.) The file shows the name, total size, and
layout with offset for the members. The information appears at the end of
the listing. You must specify the -l switch (on page 1-158) to produce a
listing file.

Figure 1-1. Assembler Input and Output Files

Assembler

Preprocessor

Intermediate
preprocessed

file (.IS)

Assembly source file
(.ASP)

Data initialization file
(.DAT)

Header file
(.H)

Listing file
(.LST)

Object file
(.OBJ)

Assembler Guide

1-6 VisualDSP++ 5.0 Assembler and Preprocessor Manual

The assembly source file may contain preprocessor commands, such as
#include, that cause the preprocessor to include header files (.h) into the
source program. The preprocessor’s only output, an intermediate source
file (.is), is the assembler’s primary input. In normal operation, the
preprocessor output is a temporary file that is deleted during the assembly
process.

Program Content

Assembly source file statements include assembly instructions, assembler
directives, and preprocessor commands.

Assembly Instructions

Instructions adhere to the processor’s instruction set syntax, which is
documented in the processor’s Programming Reference. Each instruction
line must be terminated by a semicolon (;). On TigerSHARC processors,
each instruction line (which can contain up to 4 instructions) is termi-
nated by an additional semicolon (;;). Figure 1-2 on page 1-9 shows an
example assembly source file.

To mark the location of an instruction, place an address label at the begin-
ning of an instruction line or on the preceding line. End the label with a
colon (:) before beginning the instruction. Your program can then refer to
this memory location using the label instead of an address. The assembler
places no restriction on the number of characters in a label.

Labels are case sensitive. The assembler treats “outer” and “Outer” as
unique labels. For example (in Blackfin processors),

outer: [I1] = R0;

Outer: R1 = 0X1234;

JUMP outer; // jumps back 2 instructions

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-7

Assembler

Assembler Directives

Assembler directives begin with a period (.) and end with a semicolon (;).
The assembler does not differentiate between directives in lowercase or
uppercase.

This manual prints directives in uppercase to distinguish them
from other assembly statements.

For example (in Blackfin processors),

.SECTION data1;

.BYTE2 sqrt_coeff[2] = 0x5D1D, 0xA9ED;

For a complete description of the assembler’s directive set, see “Assembler
Directives” on page 1-69.

Preprocessor Commands

Preprocessor commands begin with a pound sign (#) and end with a
carriage return. The pound sign must be the first non-white space
character on the line containing the command. If the command is longer
than one line, use a backslash (\) and a carriage return to continue the
command onto the next line.

Do not put any characters between the backslash and the carriage return.
Unlike assembler directives, preprocessor commands are case sensitive and
must be lowercase. For example,

#include "string.h"

#define MAXIMUM 100

For more information, see “Writing Preprocessor Commands” on
page 2-3. For a list of the preprocessor commands, see “Preprocessor
Command-Line Reference” on page 2-44.

Assembler Guide

1-8 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Program Structure

An assembly source file defines code (instructions) and data. It also
organizes the instructions and data to allow the use of the linker descrip-
tion file (.ldf) to describe how code and data are mapped into the
memory on your target processor. The way you structure your code and
data into memory should follow the memory architecture of the target
processor.

Use the .SECTION directive to organize the code and data in assembly
source files. The .SECTION directive defines a grouping of instructions and
data that occupies contiguous memory addresses in the processor. The
name given in a .SECTION directive corresponds to an input section name
in the linker description file.

Table 1-1, Table 1-2, and Table 1-3 show suggested input section names
for data and code that can be used in your assembly source for various
processors. Using these predefined names in your sources makes it easier
to take advantage of the default .ldf file included in your DSP system.
However, you may also define your own sections. For information on
.ldf files, refer to the VisualDSP++ Linker and Utilities Manual.

Use sections in a program to group elements to meet hardware constraints.
For example, the ADSP-BF535 processor has a separate program and data
memory in Level 1 memory only. Level 2 memory and external memory
are not separated into instruction and data memory.

Table 1-1. Suggested Input Section Names for a SHARC .ldf File

.SECTION Name Description

seg_pmco A section in program memory that holds code

seg_dmda A section in data memory that holds data

seg_pmda A section in program memory that holds data

seg_rth A section in program memory that holds system initialization code
and interrupt service routines

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-9

Assembler

To group the code that resides in off-chip memory, declare a section for
that code and place that section in the selected memory with the linker.

The example assembly program defines three sections. Each section begins
with a .SECTION directive and ends with the occurrence of the next
.SECTION directive or end-of-file.

Table 1-4 lists the sections in the source program:

Table 1-2. Suggested Input Section Names for a TigerSHARC .ldf File

.SECTION Name Description

data1 A section that holds data in memory block M1

data2 A section that holds data in memory block M2 (specified with the
PM memory qualifier)

program A section that holds code

Table 1-3. Suggested Input Section Names for a Blackfin .ldf File

.SECTION Name Description

data1 A section that holds data

program A section that holds code

constdata A section that holds global data (which is declared as constant) and
literal constants such as strings and array initializers

Table 1-4. Sections in Source Programs

Section SHARC TigerSHARC Blackfin

Data Section
Variables and buffers are declared and can be
initialized

seg_dmda data1
data2

data1
constdata

Program Section
Data, instructions, and possibly other types of
statements are in this section, including state-
ments that are needed for conditional assembly

seg_pmco program seg_rth
program

Assembler Guide

1-10 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Figure 1-2, Figure 1-3 on page 1-14, and Figure 1-4 on page 1-18
describe assembly code file structure for each processor family. They show
how a program divides into sections that match the memory segmentation
of a DSP system. Notice that an assembly source may contain preproces-
sor commands (such as #include to include other files in source code),
#ifdef (for conditional assembly), or #define (to define macros). The
SECTIONS{} commands define the .SECTION placements in the system’s
physical memory as defined by the linker’s MEMORY{} command. Assembler
directives, such as .VAR (or .BYTE for Blackfin processors), appear within
sections to declare and initialize variables.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-11

Assembler

Code File Structure for SHARC Processors

Figure 1-2 describes assembly code file structure for SHARC processors.

Looking at Figure 1-2, notice that the .PRECISION and .ROUND_ZERO
directives inform the assembler to store floating-point data with 40-bit
precision and to round a floating-point value to a closer-to-zero value if it
does not fit in the 40-bit format.

Figure 1-2. Assembly Code File Structure for SHARC Processors

.PRECISION 40;

.ROUND_ZERO;

Data Section

Preprocessor Commands
for Conditional Assembly

Preprocessor Commands .#include "const.h"
#define PI 3.14159

.SECTION/DM seg_dmda;

.VAR fxd[10] = 1,2,3,4,5,6,7,8,9,0xA;

.VAR rad;

.SECTION/PM seg_pmda;

.VAR flt[5] = PI,PI/2,1.0,2.0,2.0/3.0;

.SECTION/PM seg_pmco;
/* instructions */
function1:
 I0 = fxd;
 M0 = 1;
 I8 = flt;
 M8 = 1;

 R0 = LENGTH(flt);
 LCNTR = R0, DO this_loop UNTIL LCE;
 R0 = DM(I0,M0), R1 = PM(I8,M8);
 R2 = FIX F1 BY R0;
this_loop:
 R3 = R3 + R2;
 DM(rad) = R3;

Assembler Label

#ifdef duplicate_write
 DM(rad) = R3;
#endif
function1.end:Assembler Label

Assembler Directives

Code Section

Assembler Guide

1-12 VisualDSP++ 5.0 Assembler and Preprocessor Manual

LDF for SHARC Processors

Listing 1-1 shows a sample user-defined .ldf file for SHARC processors.
Looking at the file’s SECTIONS{} command, notice that the INPUT_SECTION
commands map to the names of memory sections (such as program, data1,
data2, ctor, heaptab, and so on) used in the example assembly sample
program.

Listing 1-1. LDF Example for SHARC Processors

ARCHITECTURE(ADSP-21062)

SEARCH_DIR($ADI_DSP\21k\lib)

$LIBRARIES = lib060.dlb, libc.dlb;

$OBJECTS = $COMMAND_LINE_OBJECTS, 060_hdr.doj;

MEMORY {

seg_rth {TYPE(PM RAM) START(0x20000) END(0x20fff) WIDTH(48)}

seg_init{TYPE(PM RAM) START(0x21000) END(0x2100f) WIDTH(48)}

seg_pmco{TYPE(PM RAM) START(0x21010) END(0x24fff) WIDTH(48)}

seg_pmda{TYPE(DM RAM) START(0x28000) END(0x28fff) WIDTH(32)}

seg_dmda{TYPE(DM RAM) START(0x29000) END(0x29fff) WIDTH(32)}

seg_stak{TYPE(DM RAM) START(0x2e000) END(0x2ffff) WIDTH(32)}

/* memory declarations for default heap */

seg_heap{TYPE(DM RAM) START(0x2a000) END(0x2bfff) WIDTH(32)}

/* memory declarations for custom heap */

seg_heaq{TYPE(DM RAM) START(0x2c000) END(0x2dfff) WIDTH(32)}

} // End MEMORY

PROCESSOR p0 {

LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS {

.seg_rth {

INPUT_SECTIONS($OBJECTS(seg_rth) $LIBRARIES(seg_rth))

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-13

Assembler

} > seg_rth

.seg_init {

INPUT_SECTIONS($OBJECTS(seg_init) $LIBRARIES(seg_init))

} > seg_init

.seg_pmco {

INPUT_SECTIONS($OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))

} > seg_pmco

.seg_pmda {

INPUT_SECTIONS($OBJECTS(seg_pmda) $LIBRARIES(seg_pmda))

} > seg_pmda

.seg_dmda {

INPUT_SECTIONS($OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))

} > seg_dmda

.stackseg {

ldf_stack_space = .;

ldf_stack_length = 0x2000;

} > seg_stak

/* section placement for default heap */

.heap {

ldf_heap_space = .;

ldf_heap_end = ldf_heap_space + 0x2000;

ldf_heap_length = ldf_heap_end - ldf_heap_space;

} > seg_heap

/* section placement for additional custom heap */

.heaq {

ldf_heaq_space = .;

ldf_heaq_end = ldf_heaq_space + 0x2000;

ldf_heaq_length = ldf_heaq_end - ldf_heaq_space;

} > seg_heaq

} // End SECTIONS

} // End P0

Assembler Guide

1-14 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Code File Structure for TigerSHARC Processors

Figure 1-3 describes assembly code file structure for TigerSHARC
processors. Looking at Figure 1-3, notice that an assembly source may
contain preprocessor commands, such as #include (to include other files
in source code), #ifdef (for conditional assembly), or #define (to define
macros).

Assembler directives, such as .VAR, appear within sections to declare and
initialize variables.

Figure 1-3. Assembly Code File Structure for TigerSHARC Processors

.SECTION data1;

.VAR buffer1 [0x100] = 'buffer .dat.';

.SECTION data2;

.VAR buffer2;

.SECTION program;
start:

#ifdef XR0_SET_TO_2
xR0=0x2;;
#else
xR0=0x1;;
#endif

J1 = buffer1;;
JL1 = 0;;
J2 = 1;;
LC0 = 0x100;;

this loop: [J+=J2] = XRO;;
IF NLCOE, JUMP this_loop;;

Data Section

Assembly Instructions

Code Section

Assembler Directive

Data Section

Assembler Label

Preprocessor Commands
for Conditional Assembly

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-15

Assembler

LDF for TigerSHARC Processors

Listing 1-2 shows a sample user-defined .ldf file for TigerSHARC
processors. Looking at the file’s SECTIONS{} command, notice that the
INPUT_SECTION commands map to the names of memory sections (such as
program, data1, data2, ctor, heaptab, and so on) used in the example
assembly sample program.

Listing 1-2. Example Linker Description File for TigerSHARC Processors

ARCHITECTURE(ADSP-TS101)

SEARCH_DIR($ADI_DSP\TS\lib)

$OBJECTS = $COMMAND_LINE_OBJECTS;

// Internal memory blocks are 0x10000 (64k)

MEMORY

{

M0Code { TYPE(RAM) START(0x00000000) END(0x0000FFFF) WIDTH(32)

}

M1Data { TYPE(RAM) START(0x00080000) END(0x0008BFFF) WIDTH(32)

}

M1Heap { TYPE(RAM) START(0x0008C000) END(0x0008C7FF) WIDTH(32)

}

M1Stack { TYPE(RAM) START(0x0008C800) END(0x0008FFFF) WIDTH(32)

}

M2Data { TYPE(RAM) START(0x00100000) END(0x0010BFFF) WIDTH(32)

}

M2Stack { TYPE(RAM) START(0x0010C000) END(0x0010FFFF) WIDTH(32)

}

SDRAM { TYPE(RAM) START(0x04000000) END(0x07FFFFFF) WIDTH(32)

}

MS0 { TYPE(RAM) START(0x08000000) END(0x0BFFFFFF) WIDTH(32)

}

Assembler Guide

1-16 VisualDSP++ 5.0 Assembler and Preprocessor Manual

MS1 { TYPE(RAM) START(0x0C000000) END(0x0FFFFFFF) WIDTH(32)

}

}

PROCESSOR p0 /* The processor in the system */
{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS

{ /* List of sections for processor P0 */

code

{

FILL(0xb3c00000)

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(program))

} >M0Code

data1

{

INPUT_SECTIONS($OBJECTS(data1))

} >M1Data

data2

{

INPUT_SECTIONS($OBJECTS(data2))

} >M2Data

// Provide support for initialization, including C++ static

// initialization. This section builds a table of

// initialization function pointers.

ctor

{

INPUT_SECTIONS($OBJECTS(ctor0))

INPUT_SECTIONS($OBJECTS(ctor1))

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-17

Assembler

INPUT_SECTIONS($OBJECTS(ctor2))

INPUT_SECTIONS($OBJECTS(ctor3))

INPUT_SECTIONS($OBJECTS(ctor))

} >M1Data

// Table containing heap segment descriptors

heaptab

{

INPUT_SECTIONS($OBJECTS(heaptab))

} >M1Data

// Allocate stacks for the application.

jstackseg

{

ldf_jstack_limit = .;

ldf_jstack_base = . + MEMORY_SIZEOF(M1Stack);

} >M1Stack

kstackseg

{

ldf_kstack_limit = .;

ldf_kstack_base = . + MEMORY_SIZEOF(M2Stack);

} >M2Stack

// The default heap occupies its own memory block.

defheapseg

{

ldf_defheap_base = .;

ldf_defheap_size = MEMORY_SIZEOF(M1Heap);

} >M1Heap

}

}

Assembler Guide

1-18 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Code File Structure for Blackfin Processors

Figure 1-4 describes the Blackfin processor’s assembly code file structure
and shows how a program divides into sections that match the memory
segmentation of Blackfin processors.

Figure 1-4. Assembly Source File Structure for Blackfin Processors

.SECTION constdata;

.VAR buffer1 [6] = "buffer1.dat";

.SECTION data1;

.VAR buffer2[0x100];

#ifdef INCLUDE_BUFFER3
.VAR buffer3[0x100];
#endif

.SECTION program;

.global my_function;

P0 = R0;
I0 = R1;
P1 = 19;
R0 = 0;
R1 = [P0++];
R2 = [I0++];
LSETUP (begin_loop, end_loop) LC0 = P1;

begin_loop:
 R1 *= R2;
 R2 = [I0++];
end_loop:
 R0= R0 + R1 (NS) || R1 = [P0++] || NOP;

R1 *= R2;
R0 = R0 + R1;

Data Section

Assembly Instructions

Code (program) Section

Assembler Directive

Data Section

Assembler Label

Preprocessor Commands
for Conditional Assembly

Assembler Directive

my_function.end:Assembler Label

my_function:

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-19

Assembler

You can use sections in a program to group elements to meet hardware
constraints. For example, the ADSP-BF535 processor has a separate pro-
gram and data memory in Level 1 memory only. Level 2 memory and
external memory are not separated into instruction and data memory.

LDF for Blackfin Processors

Listing 1-3 on page 1-19 shows a sample user-defined linker description
file (.ldf). Looking at the file’s SECTIONS{} command, notice that the
INPUT_SECTION commands map to sections program, data1, and
constdata.

Listing 1-3. Example Linker Description File for Blackfin Processors

ARCHITECTURE(ADSP-BF535)

SEARCH_DIR($ADI_DSP\Blackfin\lib)

#define LIBS libc.dlb, libdsp.dlb

$LIBRARIES = LIBS, librt535.dlb;

$OBJECTS = $COMMAND_LINE_OBJECTS;

MEMORY /* Define/label system memory */

{ /* List of global Memory Segments */

MEM_PROGRAM { TYPE(RAM) START(0xF0000000) END(0xF002FFFF)

WIDTH(8) }

MEM_HEAP { TYPE(RAM) START(0xF0030000) END(0xF0037FFF)

WIDTH(8) }

MEM_STACK { TYPE(RAM) START(0xF0038000) END(0xF003DFFF)

WIDTH(8) }

MEM_SYSSTACK { TYPE(RAM) START(0xF003E000) END(0xF003FDFF)

WIDTH(8) }

MEM_ARGV { TYPE(RAM) START(0xF003FE00) END(0xF003FFFF)

WIDTH(8) }

}

PROCESSOR p0 /* The processor in the system */

Assembler Guide

1-20 VisualDSP++ 5.0 Assembler and Preprocessor Manual

{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS

{ /* List of sections for processor P0 */

program

{ // Align all code sections on 2 byte boundary

INPUT_SECTION_ALIGN(2)

INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))

INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))

INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS(

$OBJECTS(constdata)$LIBRARIES(constdata))

INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))

INPUT_SECTION_ALIGN(2)

INPUT_SECTIONS($OBJECTS(seg_rth))

} >MEM_PROGRAM

stack

{

ldf_stack_space = .;

ldf_stack_end = ldf_stack_space +

MEMORY_SIZEOF(MEM_STACK) - 4;

} >MEM_STACK

sysstack

{

ldf_sysstack_space = .;

ldf_sysstack_end = ldf_sysstack_space +

MEMORY_SIZEOF(MEM_SYSSTACK) - 4;

} >MEM_SYSSTACK

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-21

Assembler

heap

{ // Allocate a heap for the application

ldf_heap_space = .;

ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(MEM_HEAP)

- 1;

ldf_heap_length = ldf_heap_end - ldf_heap_space;

} >MEM_HEAP

argv

{ // Allocate argv space for the application

ldf_argv_space = .;

ldf_argv_end = ldf_argv_space + MEMORY_SIZEOF(MEM_ARGV)

- 1;

ldf_argv_length = ldf_argv_end - ldf_argv_space;

} >MEM_ARGV

}

}

Program Interfacing Requirements

You can interface your assembly program with a C or C++ program.
The C/C++ compiler supports two methods for mixing C/C++ and
assembly language:

• Embedding assembly code in C or C++ programs

• Linking together C or C++ and assembly routines

To embed (inline) assembly code in your C or C++ program, use the
asm() construct. To link together programs that contain C/C++ and
assembly routines, use assembly interface macros. These macros facilitate
the assembly of mixed routines. For more information about these
methods, see the VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for the appropriate target processor.

Assembler Guide

1-22 VisualDSP++ 5.0 Assembler and Preprocessor Manual

When writing a C or C++ program that interfaces with assembly, observe
the same rules that the compiler follows as it produces code to run on the
processor. These rules for compiled code define the compiler’s run-time
environment. Complying with a run-time environment means following
rules for memory usage, register usage, and variable names.

The definition of the run-time environment for the C/C++ compiler is
provided in the VisualDSP++ 5.0 C/C++ Compiler and Library Manual for
the appropriate target processor, which also includes a series of examples
to demonstrate how to mix C/C++ and assembly code.

Using Assembler Support for C Structs
The assembler supports C typedef/struct declarations within assembly
source. These assembler data directives and built-ins provide high-level
programming features with C structs in the assembler.

Data Directives:
.IMPORT (see on page 1-90)
.EXTERN STRUCT (see on page 1-84)
.STRUCT (see on page 1-130)

C Struct in Assembly Built-Ins:
OFFSETOF(struct/typedef,field) (see on page 1-65)
SIZEOF(struct/typedef) (see on page 1-65)

Struct References:
struct->field (support nests) (see “Struct References” on page 1-66)

For more information on C struct support, refer to the “-flags-compiler”
command-line switch on page 1-153 and to “Reading a Listing File” on
page 1-35.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-23

Assembler

C structs in assembly features accept the full set of legal C symbol names,
including those that are otherwise reserved in the appropriate assembler.
For example,

• In the SHARC assembler, I1, I2, and I3 are reserved keywords,
but it is legal to reference them in the context of the C struct in
assembly features.

• In the TigerSHARC assembler, J1, J2, and J3 are reserved
keywords, but it is legal to reference them in the context of the C
struct in assembly features.

• In the Blackfin assembler, as an example, “X” and “Z” are reserved
keywords, but it is legal to reference them in the context of the C
struct in assembly features.

The examples below show how to access the parts of the struct defined in
the header file, but they are not complete programs on their own. Refer to
your DSP project files for complete code examples.

Blackfin Example

.IMPORT "Coordinate.h";

// typedef struct Coordinate {

// int X;

// int Y;

// int Z;

// } Coordinate;

.SECTION data1;

.STRUCT Coordinate Coord1 = {

X = 1,

Y = 4,

Z = 7

};

Assembler Guide

1-24 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.SECTION program;

P0.l = Coord1->X;

P0.h = Coord1->X;

P1.l = Coord1->Y;

P1.h = Coord1->Y;

P2.l = Coord1->Z;

P2.h = Coord1->Z;

P3.l = Coord1+OFFSETOF(Coordinate,Z);

P3.h = Coord1+OFFSETOF(Coordinate,Z);

SHARC Example

.IMPORT "Samples.h";

// typedef struct Samples {

// int I1;

// int I2;

// int I3;

// }Samples;

.SECTION/DM seg_dmda;

.STRUCT Samples Sample1 ={

I1 = 0x1000,

I2 = 0x2000,

I3 = 0x3000

};

.SECTION/PM seg_pmco;

doubleMe:

// The code may look confusing, but I2 can be used both

// as a register and a struct member name

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-25

Assembler

B2 = Sample1;

M2 = OFFSETOF(Sample1,I2);

R0 = DM(M2,I2);

R0 = R0+R0;

DM(M2,I2) = R0;

For better code readability, avoid using .STRUCT member names
that have the same spelling as assembler keywords. This may not
always be possible if your application needs to use an existing set of
C header files.

Preprocessing a Program
The assembler includes a preprocessor that allows the use of C-style
preprocessor commands in your assembly source files. The preprocessor
automatically runs before the assembler unless you use the assembler’s -sp
(skip preprocessor) switch. Table 2-5 on page 2-21 lists preprocessor
commands and provides a brief description of each command.

You can see the command line the assembler uses to invoke the preproces-
sor by adding the -v switch (on page 1-165) to the assembler command
line or by selecting the Generate verbose output option on the Assemble
page of the Project Options dialog box. See “Specifying Assembler
Options in VisualDSP++” on page 1-168.

Use preprocessor commands to modify assembly code. For example,
you can use the #include command to fill memory, load configuration
registers, or set up processor parameters. You can use the #define com-
mand to define constants and aliases for frequently used instruction
sequences. The preprocessor replaces each occurrence of the macro
reference with the corresponding value or series of instructions.

For example, the MAXIMUM macro in the example on page 1-7 is replaced
with the number 100 during preprocessing.

Assembler Guide

1-26 VisualDSP++ 5.0 Assembler and Preprocessor Manual

For more information on the preprocessor command set, see “Preproces-
sor Command Reference” on page 2-21. For more information on
preprocessor usage, see “-flags-pp -opt1 [,-opt2...]” on page 1-155

There is one important difference between the assembler prepro-
cessor and compiler preprocessor. The assembler preprocessor
treats the “.” character as part of an identifier. Thus, .EXTERN is a
single identifier and will not match a preprocessor macro EXTERN.
This behavior can affect how macro expansion is done for some
instructions.

For example,

#define EXTERN ox123

.EXTERN Coordinate; // EXTERN not affected by macro

#define MY_REG P0

MY_REG.1 = 14; // MY_REG.1 is not expanded;

// "." is part of token

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-27

Assembler

Using Assembler Feature Macros
The assembler includes the command to invoke preprocessor macros to
define the context, such as the source language, the architecture, and the
specific processor. These feature macros allow programmers to use prepro-
cessor conditional commands to configure the source for assembly based
on the context.

Table 1-5 lists the set of feature macros for SHARC processors.

Table 1-5. Feature Macros for SHARC Processors

-D_LANGUAGE_ASM=1 Always present

-D__ADSP21000__=1 Always present

-D__ADSP21020__=1
-D__2102x__=1

Present when running easm21K -proc ADSP-21020
with ADSP-21020 processors

-D__ADSP21060__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21060
with ADSP-21060 processors

-D__ADSP21061__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21061
with ADSP-21061 processors

-D__ADSP21062__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21062
with ADSP-21062 processors

-D__ADSP21065L__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21065L
with ADSP-21065L processors

-D__ADSP21160__=1
-D__2116x__=1

Present when running easm21K -proc ADSP-21160
with ADSP-21160 processors

-D__ADSP21161__=1
-D__2116x__=1

Present when running easm21K -proc ADSP-21161
with ADSP-21161 processors

-D__ADSP21261__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21261
with ADSP-21261 processors

-D__ADSP21262__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21262
with ADSP-21262 processors

Assembler Guide

1-28 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Table 1-6 lists the set of feature macros for TigerSHARC processors.

Table 1-7 lists the set of feature macros for Blackfin processors.

-D__ADSP21266__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21266
with ADSP-21266 processors

-D__ADSP21267__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21267
with ADSP-21267 processors

-D__ADSP21362__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21362
with ADSP-21362 processors

-D__ADSP21363__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21363
with ADSP-21363 processors

-D__ADSP21364__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21364
with ADSP-21364 processors

-D__ADSP21365__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21365
with ADSP-21365 processors

-D__ADSP21366__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21366
with ADSP-21366 processors

-D__ADSP21367__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21367
with ADSP-21367 processors

-D__ADSP21368__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21368
with ADSP-21368 processors

-D__ADSP21369__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21369
with ADSP-21369 processors

-D__ADSP2137x__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-2137x
with ADSP-2137x processors

-D__ADSP21371__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21371
with ADSP-21371 processors

-D__ADSP21375__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21375
with ADSP-21375 processors

Table 1-5. Feature Macros for SHARC Processors (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-29

Assembler

Table 1-6. Feature Macros for TigerSHARC Processors

-D_LANGUAGE_ASM =1 Always present

-D__ADSPTS__ =1 Always present

-D__ADSPTS101__ =1 Present when running easmts -proc ADSP-TS101
with ADSP-TS101 processor

-D__ADSPTS201__ =1 Present when running easmts -proc ADSP-TS201
with ADSP-TS201 processor

-D__ADSPTS202__ =1 Present when running easmts -proc ADSP-TS202
with ADSP-TS202 processor

-D__ADSPTS203__ =1 Present when running easmts -proc ADSP-TS203
with ADSP-TS203 processor

-D__ADSPTS20x__ =1 Present when running easmts -proc ADSP-TS201 with
ADSP-TS201 processor, easmts -proc ADSP-TS202 with
ADSP-TS202 processor, or easmts -proc ADSP-TS203 with
ADSP-TS203 processor.

Table 1-7. Feature Macros for Blackfin Processors

-D_LANGUAGE_ASM=1 Always present

-D__ADSPBLACKFIN__ =1 Always present

-D__ADSPLPBLACKFIN__ =1 Always present for non-ADSP-BF535 processors

-D__ADSPBF51x__=1 Present when running:
easmblkfn -proc ADSP-BF512
easmblkfn -proc ADSP-BF514
easmblkfn -proc ADSP-BF516

-D__ADSPBF52x__=1 Present when running:
easmblkfn -proc ADSP-BF522
easmblkfn -proc ADSP-BF523
easmblkfn -proc ADSP-BF524
easmblkfn -proc ADSP-BF525
easmblkfn -proc ADSP-BF526
easmblkfn -proc ADSP-BF527

Assembler Guide

1-30 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-D__ADSPBF54x__=1 Present when running:
easmblkfn -proc ADSP-BF542
easmblkfn -proc ADSP-BF544
easmblkfn -proc ADSP-BF547
easmblkfn -proc ADSP-BF548
easmblkfn -proc ADSP-BF549

-D__ADSPBF512__=1 Present when running easmblkfn -proc ADSP-BF512
with ADSP-BF512 processor

-D__ADSPBF514__=1 Present when running easmblkfn -proc ADSP-BF514
with ADSP-BF514 processor

-D__ADSPBF516__=1 Present when running easmblkfn -proc ADSP-BF516
with ADSP-BF516 processor

-D__ADSPBF522__=1 Present when running easmblkfn -proc ADSP-BF522
with ADSP-BF522 processor

-D__ADSPBF523__=1 Present when running easmblkfn -proc ADSP-BF523
with ADSP-BF523 processor

-D__ADSPBF524__=1 Present when running easmblkfn -proc ADSP-BF524
with ADSP-BF524 processor

-D__ADSPBF525__=1 Present when running easmblkfn -proc ADSP-BF525
with ADSP-BF525 processor

-D__ADSPBF526__=1 Present when running easmblkfn -proc ADSP-BF526
with ADSP-BF526 processor

-D__ADSPBF527__=1 Present when running easmblkfn -proc ADSP-BF527
with ADSP-BF527 processor

-D__ADSPBF531__=1
-D__ADSP21531__=1

Present when running easmblkfn -proc ADSP-BF531
with ADSP-BF531 processor

-D__ADSPBF532__=1
-D__ADSP21532__=1

Present when running easmblkfn -proc ADSP-BF532
with ADSP-BF532 processor

-D__ADSPBF533__=1
-D__ADSP21533__=1

Present when running easmblkfn -proc ADSP-BF533
with ADSP-BF533 processor

-D__ADSPBF534__=1 Present when running easmblkfn -proc ADSP-BF534
with ADSP-BF534 processor

Table 1-7. Feature Macros for Blackfin Processors (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-31

Assembler

For .IMPORT headers, the assembler calls the compiler driver with the
appropriate processor option, and the compiler sets the machine constants
accordingly (and defines -D_LANGUAGE_C=1). This macro is present when
used for C compiler calls to specify headers. It replaces -D_LANGUAGE_ASM.

For example,

easm21k -proc adsp-21262 assembly --> cc21K -proc adsp-21262

easmts -proc -ADSP-TS101 assembly --> ccts -proc ADSP-TS101

-D__ADSPBF535__=1
-D__ADSP21535__=1

Present when running easmblkfn -proc ADSP-BF535
with ADSP-BF535 processor

-D__ADSPBF536__=1 Present when running easmblkfn -proc ADSP-BF536
with ADSP-BF536 processor

-D__ADSPBF537__=1 Present when running easmblkfn -proc ADSP-BF537
with ADSP-BF537 processor

-D__ADSPBF538__=1 Present when running easmblkfn -proc ADSP-BF538
with ADSP-BF538 processor

-D__ADSPBF539__=1 Present when running easmblkfn -proc ADSP-BF539
with ADSP-BF539 processor

-D__ADSPBF542__=1 Present when running easmblkfn -proc ADSP-BF542
with ADSP-BF542 processor

-D__ADSPBF544__=1 Present when running easmblkfn -proc ADSP-BF544
with ADSP-BF544 processor

-D__ADSPBF547__=1 Present when running easmblkfn -proc ADSP-BF547
with ADSP-BF547processor

-D__ADSPBF548__=1 Present when running easmblkfn -proc ADSP-BF548
with ADSP-BF548 processor

-D__ADSPBF549__=1 Present when running easmblkfn -proc ADSP-BF549
with ADSP-BF549 processor

-D__ADSPBF561__=1 Present when running easmblkfn -proc ADSP-BF561
with ADSP-BF561 processor

Table 1-7. Feature Macros for Blackfin Processors (Cont’d)

Assembler Guide

1-32 VisualDSP++ 5.0 Assembler and Preprocessor Manual

easmblkfn -proc ADSP-BF535 assembly --> ccblkfn -proc ADSP-BF535

Use the -verbose switch to verify what macro is default-defined.
Refer to Chapter 1 in the VisualDSP++ 5.0 C/C++ Compiler and
Library Manual of the appropriate target processor for more
information.

-D__VISUALDSPVERSION__ Predefined Macro (Assembler)

The -D__VISUALDSPVERSION__ predefined macro provides product version
information to VisualDSP++. The macro allows a preprocessing check to
be placed within code. Use it to differentiate between VisualDSP++
releases and updates. This macro applies to all Analog Devices processors.

Syntax:

-D__VISUALDSPVERSION__=0xMMmmUUxx

 Table 1-8 explains the parameters of this macro.

The 0xMMmmUUxx information is obtained from the <install_path>\Sys-
tem\VisualDSP.ini file. Initially, xx is set to “00”.

If an unexpected problem occurs while trying to locate VisualDSP.ini or
while extracting information from the VisualDSP.ini file, the
__VISUALDSPVERSION__ macro will not be encoded to the VisualDSP++

Table 1-8. -D__VISUALDSPVERSION__ Decoding of Hex Value

Parameter Description

MM VersionMajor. The major release number; for example, 4 in release 4.5.

mm VersionMinor. The minor release number; for example, 5 in release 4.5.

UU VersionPatch. The number of the release update; for example, 6 in release 4.5,
update 6.

xx Reserved for future use (always 00 initially)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-33

Assembler

product version. In the Error Check example below, the
-D__VISUALDSPVERSION__ 0xffffffff string is displayed as part of an
error message when the version information is unable to be encoded.

Code Example: Legacy

#if !defined(__VISUALDSPVERSION__)

#warning Building with VisualDSP++ 4.5 Update 5 or prior. No

__VISUALDSPVERSION__ available.

#endif

Code Example: VisualDSP++ 4.5 Update 6 or Later

#if __VISUALDSPVERSION__ >= 0x04050600

#warning Building with VisualDSP++ 4.5 Update 6 or later

#endif

Code Example: Error Check

#if __VISUALDSPVERSION__ == 0xffffffff

#error Unexpected build problems, unknown VisualDSP++ Version

#endif

Code Examples: Assembly

#if __VISUALDSPVERSION__ == 0x05000000

// Building with VisualDSP++ 5.0

.VAR VersionBuildString[] = ‘Building with VisualDSP++ 5.0’;

#elif __VISUALDSPVERSION__ == 0x04050600

// Building with VisualDSP++ 4.5, Update 6

.VAR VersionBuildString[] = 'Building with VisualDSP++ 4.5 Update

6';

#else

// Building with unknown VisualDSP++ version

.VAR VersionBuildString[] = 'Building with unknown VisualDSP++

version?';

#endif

Assembler Guide

1-34 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Generating Make Dependencies
The assembler can generate make dependencies for a file, allowing
VisualDSP++ and other makefile-based build environments to determine
when to rebuild an object file due to changes in the input files. The assem-
bly source file and any files identified in the #include commands, .IMPORT
directives, or buffer initializations (in .VAR and .STRUCT directives) consti-
tute the make dependencies for an object file.

When you request make dependencies for the assembly, the assembler
produces the dependencies from buffer initializations. The assembler also
invokes the preprocessor to determine the make dependency from
#include commands, and the compiler to determine the make
dependencies from the .IMPORT headers.

For example,

easmblkfn -proc ADSP-BF533 -MM main.asm

"main.doj": "/VisualDSP/Blackfin/include/defBF532.h"

"main.doj": "/VisualDSP/Blackfin/include/defBF533.h"

"main.doj": "/VisualDSP/Blackfin/include/def_LPBlackfin.h"

"main.doj": "main.asm"

"main.doj": "input_data.dat"

The original source file main.asm is as follows:

...

#include "defBF533.h"

...

.GLOBAL input_frame;

.BYTE input_frame[N] = "input_data.dat"; // load in 256 values

// from a test file

...

In this case, defBF533.h includes defBF532.h, which also includes
def_LPBlackfin.h.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-35

Assembler

Reading a Listing File
A listing file (.lst) is an optional output text file that lists the results of
the assembly process. Listing files provide the following information:

• Address – The first column contains the offset from the .SECTION’s
base address.

• Opcode – The second column contains the hexadecimal opcode
that the assembler generates for the line of assembly source.

• Line – The third column contains the line number in the assembly
source file.

• Assembly Source – The fourth column contains the assembly
source line from the file.

The assembler listing file provides information about the imported C data
structures. It tells which imports were used within the program, followed
by a more detailed section. It shows the name, total size, and layout with
offset for the members. The information appears at the end of the listing.
You must specify the -l filename option (as shown on page 1-158)
to produce a listing file.

Enabling Statistical Profiling for Assembly
Functions

Use the following steps to enable statistical profiling in assembler sources.

1. When using the VisualDSP++ IDDE, use the Assemble page of the
Project Options dialog box (Figure 1-6 on page 1-169) to select
and/or set assembler functional options.

2. Select the Generate debug information option.

Assembler Guide

1-36 VisualDSP++ 5.0 Assembler and Preprocessor Manual

3. Mark ending function boundaries with .end labels in the assembler
source. For example:

.SECTION program;

.GLOBAL funk1;

funk1:

...

RTS;

funk1.end:

.GLOBAL funk2;

funk2:

...

RTS;

funk2.end:

If you have global functions without ending labels, the assembler
provides warnings when debug information is generated.

.GLOBAL funk3;

funk3:

...

RTS;

[Warning ea1121] "test.asm":14 funk3: -g assembly with

global function without ending label. Use 'funk3.end' or

'funk3.END' to mark the ending boundary of the function for

debugging information for automated statistical profiling

of assembly functions.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-37

Assembler

4. Add ending labels or selectively disable the warning by adding the
-Wsuppress 1121 option to the Additional options field on the
Assembly page (refer to “WARNING ea1121: Missing End Labels”
on page 1-156 for more information).

5. Choose Statistical Profiling -> New Profile or Linear Profiling ->
New Profile, as appropriate. Assembler functions automatically
appear in the profiling window along with C functions. Click on
the function name to bring up the source containing the function
definition.

Assembler Syntax Reference

1-38 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Assembler Syntax Reference
When developing a source program in assembly language, include
preprocessor commands and assembler directives to control the program’s
processing and assembly. You must follow the assembler rules and syntax
conventions to define symbols (identifiers) and expressions, and to use
different numeric and comment formats.

Software developers who write assembly programs should be familiar with:

• “Assembler Keywords and Symbols” on page 1-39

• “Assembler Expressions” on page 1-52

• “Assembler Operators” on page 1-53

• “Numeric Formats” on page 1-58

• “Comment Conventions” on page 1-62

• “Conditional Assembly Directives” on page 1-62

• “C Struct Support in Assembly Built-In Functions” on page 1-65

• “Struct References” on page 1-66

• “Assembler Directives” on page 1-69

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-39

Assembler

Assembler Keywords and Symbols
The assembler supports predefined keywords that include register and
bitfield names, assembly instructions, and assembler directives.
The following tables list assembler keywords for supported processors.
Although the keywords appear in uppercase, the keywords are case
insensitive in the assembler’s syntax. For example, the assembler does not
differentiate between MAX and max.

Table 1-9 lists the assembler keywords for SHARC processors.

Table 1-9. SHARC Processor Assembler Keywords

__ADI__ __DATE__ __FILE__ __LastSuffix__ __LINE__

__TIME__

.ALIGN .ELIF .ELSE .ENDIF .EXTERN

.FILE .FILE_ATTR .GLOBAL .IF .IMPORT

.LEFTMARGIN .LIST .LIST_DATA .LIST_DATFILE .LIST_DEFTAB

.LIST_LOCTAB .LIST_WRAPDATA .NEWPAGE .NOLIST_DATA .NOLIST_DATFIL
E

.NOLIST_WRAPDA
TA

.PAGELENGTH .PAGEWIDTH .PRECISION .ROUND_MINUS

.ROUND_NEAREST .ROUND_PLUS .ROUND_ZERO .PREVIOUS .SECTION

.STRUCT .VAR .WEAK

ABS ACS ACT ADDRESS AND

ASHIFT ASTAT AV

B0 B1 B2 B3 B4

B5 B6 B7 B8 B9

B10 B11 B12 B13 B14

Assembler Syntax Reference

1-40 VisualDSP++ 5.0 Assembler and Preprocessor Manual

B15 BB BCLR BF BIT

BITREV BM BSET BTGL BTSTS

BY

CA CACHE CALL CH CI

CJUMP CL CLIP COMP COPYSIGN

COS CURLCNTR

DADDR DB DEC DEF DIM

DMA1E DMA1S DMA2E DMA2S DMADR

DMABANK1 DMABANK2 DMABANK3 DMAWAIT DO

DOVL

EB ECE EF ELSE EMUCLK

EMUCLK2 EMUIDLE EMUN ENDEF EOS

EQ EX EXP EXP2

F0 F1 F2 F3 F4

F5 F6 F7 F8 F9

F10 F11 F12 F13 F14

F15 FADDR FDEP FEXT FILE

FIX FLAGO_IN FLAG1_IN FLAG2_IN FLAG3_IN

FLOAT FLUSH FMERG FOREVER FPACK

FRACTIONAL FTA FTB FTC FUNPACK

GCC_COMPILED GE GT

I0 I1 I2 I3 I4

I5 I6 I7 I8 I9

I10 I11 I12 I13 I14

I15 IDLEI15 IDLE16 IF IMASK

IMASKP INC IRPTL

JUMP

Table 1-9. SHARC Processor Assembler Keywords (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-41

Assembler

L0 L1 L2 L3 L4

L5 L6 L7 L8 L9

L10 L11 L12 L13 L14

L15 LA LADDR LCE LCNTR

LE LADDR LCE LCNTR LE

L15 LA LADDR LCE LCNTR

LE LEFTO LEFTZ LENGTH

LINE LN LOAD LOG2 LOGB

LOOP LR LSHIFT LT

M0 M1 M2 M3 M4

M5 M6 M7 M8 M9

M10 M11 M12 M13 M14

M15 MANT MAX MBM MIN

MOD MODE1 MODE2 MODIFY MROB

MROF MR1B MR1F MR2B MR2F

MRB MRF MS MV MROB

MROF

NE NOFO NOFZ NOP NOPSPECIAL

NOT NU

OFFSETOF OR

P20 P32 P40 PACK PAGE

PC PCSTK PCSTKP PM PMADR

PMBANK1 PMDAE PMDAS POP POVLO

POVL1 PSA1E PSA1S PSA2E PSA3E

PSA3S PSA4E PSA4S PUSH PX

PX1 PX2 RETAIN_NAME

R0 R1 R2 R3 R4

Table 1-9. SHARC Processor Assembler Keywords (Cont’d)

Assembler Syntax Reference

1-42 VisualDSP++ 5.0 Assembler and Preprocessor Manual

RF5 R6 R7 R8 R9

R10 R11 R12 R13 R14

R15 READ RECIPS RFRAME RND

ROT RS RSQRTS RTI RTS

SCALB SCL SE SET SF

SIN SIZE SIZEOF SQR SR

SSF SSFR SSI SSIR ST

STEP STKY STRUCT STS SUF

SUFR SV SZ

TAG TCOUNT TF TGL TPERIOD

TRUE TRUNC TST TYPE TRAP

UF UI UNPACK UNTIL UR

USF USFR USI USIR USTAT1

USTAT2 UUF UUFR UUIR UUIR

VAL WITH XOR

Table 1-9. SHARC Processor Assembler Keywords (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-43

Assembler

Table 1-10 lists the assembler keywords for TigerSHARC processors.

Table 1-10. TigerSHARC Processor Assembler Keywords

__ADI__ __DATE__ __FILE__ __LastSuffix__ __LINE__

__TIME__

.ALIGN .ALIGN_CODE .ELIF .ELSE .ENDIF

.EXTERN .FILE .FILE_ATTR .GLOBAL .IF

.IMPORT .LEFTMARGIN .LIST .LIST_DATA .LIST_DATFILE

.LIST_DEFTAB .LIST_LOCTAB .LIST_WRAPDATA .MESSAGE .NOLIST_DATA

.NOLIST_DATFIL
E

.NOLIST_WRAPDA
TA

.NEWPAGE .NOLIST_DATA .NOLIST_DATFIL
E

.NOLIST_WRAPDA
TA

.PAGELENGTH .PAGEWIDTH .PREVIOUS .SECTION

.SEPARATE_MEM_
SEGMENTS

.SET .STRUCT .VAR .WEAK

ABS ACS ADDRESS AND ASHIFT

BCLR BFOINC BFOTMP BITEST BITFIFO

BKFPT BR BSET BTBDIS BTBELOCK

BTBEN BTBLOCK BTBINV BTGL BY

C CALL CB CJMP CJMP_CALL

CI CLIP COMP COMPACT COPYSIGN

DAB DEC DESPREAD D0

ELSE EMUTRAP EXP EXPAND EXTD

FCOMP FDEP FEXT FIX FLOAT

FTEST0 FTEST1 FOR GETBITS IDLE

INC JC JUMP KC

LD0 LD1 LENGTH LINES LOGB

LP LSHIFT LSHIFTR LIBSIM_CALL

Assembler Syntax Reference

1-44 VisualDSP++ 5.0 Assembler and Preprocessor Manual

MANT MASK MAX MERGE MIN

NEWPAGE NOT NOP NP

OFFSETOF ONES OR

PASS PERMUTE PRECISION PUTBITS

RDS RECIPS RESET RETI ROT

ROTL ROTR ROUND RSQRTS RTI

SCALB SDAB SE SECTION SFO

SF1 SNGL SIZE SIZEOF STRUCT

SUM TMAX TRAP TYPEVAR UNTIL

VMIN VMAX XCORRS XOR XSDAB

YDAB YSDAB

 JK Register Group

J0 through J31

K0 through K31

JB0 JB1 JB2 JB3

KB0 KB1 KB2 KB3

JL0 JL1 JL2 JL3

KL0 KL1 KL2 KL3

RF Register Group

FR0 through FR31

MR3:0 MR3:2 MR1:0

MR0 MR1 MR2 MR3 MR4

PR0 PR1 PR1:0

R0 through R31

XSTAT YSTAT XYSTAT

XR0 through XR31

YR0 through YR31

Table 1-10. TigerSHARC Processor Assembler Keywords (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-45

Assembler

Accelerator Register Group

TR0 through TR31

THR0 THR1 THR2 THR3

EP Register Group

BMAX BMAXC BUSLK FLGPIN FLGPINCL

FLGPINST SDRCON SYSCON SYSCONCL SYSCONST

SYSCTL SYSTAT SYSTATCL

Misc. Register Group

AUTODMA0 AUTODMA1

BTBCMD BTBDATA

BTB0TG0 through BTB0TG31

BTB1TG0 through BTB1TG31

BTB2TG0 through BTB2TG31

BTB3TG0 through BTB3TG31

BTB0TR0 through BTB0TR31

BTB1TR0 through BTB1TR31

BTB2TR0 through BTB2TR31

BTB3TR0 through BTB3TR31

BTBLRU0 through BTBLRU31

CACMD0 CACMD2 CACMD4 CACMD8 CACMD10

CACMDALL

CADATA0 CADATA2 CADATA4 CADATA8 CADATA10

CADATAALL

CASTAT0 CASTAT2 CASTAT4 CASTAT8 CASTAT10

CASTATALL

CCAIR0 CCAIR2 CCAIR4 CCAIR8 CCAIR10

CCAIRALL

Table 1-10. TigerSHARC Processor Assembler Keywords (Cont’d)

Assembler Syntax Reference

1-46 VisualDSP++ 5.0 Assembler and Preprocessor Manual

CCNT0 CCNT1 CJMP CMCTL

DBGE DC4 through DC13

DCD0 DCD1 DCD2 DCD3 DCNT

DCNTCL DCNTST

DCS0 DCS1 DCS2 DCS3

DSTAT DSTATC

EMUCTL EMUDAT EMUIR EMUSTAT

IDCODE ILATCLH ILATCLL ILATH ILATL

ILATSTH ILATSTL IMASKH IMASKL INSTAT

INTEN INTCTL IVBUSLK IVDBG IVHW

IVDMA0 through IVDMA13

IVIRQ0 IVIRQ1 IVIRQ2 IVIRQ3 IVLINK0

IVLINK1 IVLINK2 IVLINK3 IVSW IVTIMER0HP

IVTIMER0LP IVTIMER1HP IVTIMER1LP

LBUFRX0 LBUFRX1 LBUFRX2 LBUFRX3

LBUFTX0 LBUFTX1 LBUFTX2 LBUFTX3

LC0 LC1 KB2 KB3

LCTL0 LCTL1 LCTL2 LCTL3

LRCTL0 LRCTL1 LRCTL2 LRCTL3

LRSTAT0 LRSTAT1 LRSTAT2 LRSTAT3

LRSTATC0 LRSTATC1 LRSTATC2 LRSTATC3

LSTAT0 LSTAT1 LSTAT2 LSTAT3

LSTATC0 LSTATC1 LSTATC2 LSTATC3

LTCTL0 LTCTL1 LTCTL2 LTCTL3

LTSTAT0 LTSTAT1 LTSTAT2 LTSTAT3

LTSTATC0 LTSTATC1 LTSTATC2 LTSTATC3

MISR0 MISR1 MISR2 MISRCTL

Table 1-10. TigerSHARC Processor Assembler Keywords (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-47

Assembler

Table 1-11 lists the assembler keywords for Blackfin processors.

RETI RETIB RETS RTI

OSPID

PMASKH PMASKL PRFM PRFCNT RETAIN_NAME

SERIAL_H SERIAL_L SFREG SQCTL SQCTLST

SQCTLCL SQSTAT

TESTMODES TIMER0L TIMER1L TIMER0H TIMER1H

TMRIN0L TMRIN0H TMRIN1L TMRIN1H TRCB

TRCBMASK TRCBPTR TRCBVAL

VIRPT

WP0CTL WP1CTL WP2CTL WP0STAT WP1STAT

WP2STAT W0H W0L W1H W1L

W2H W2L

Conditions which may be prefixed with X, Y, XY, NX, NY, and XY

AEQ ALE ALT MEQ MLE

MLT SEQ SF1 SF0 SLT

Conditions which may be prefixed with J, K, NJ, and NK

EQ LE LT CBQ CB1

Conditions which may be prefixed with N

ISF0 ISF1 LC0E LC1E BM

FLAG0_IN FLAG1_IN FLAG2_IN FLAG3_IN

Table 1-11. Blackfin Processor Assembler Keywords

.ALIGN .ASCII .ASM_ASSERT .ASSERT .BSS

.BYTE .BYTE2 .BYTE4 .DATA .ELIF

.ELSE .ENDIF .ELSE .ENDIF .EXTERN

.FILE .FILE_ATTR .GLOBAL .GLOBL

Table 1-10. TigerSHARC Processor Assembler Keywords (Cont’d)

Assembler Syntax Reference

1-48 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.IF .INC/BINARY .INCBIN .IMPORT

.LEFTMARGIN .LIST .LIST_DATA .LIST_DATFILE .LIST_DEFTAB

.LIST_LOCTAB .LIST_WRAPDAT
A

.LONG

.NEWPAGE .NOLIST .NOLIST_DATA .NOLIST_DATFILE .NOLIST_WRAPDAT
A

.PAGELENGTH .PAGEWIDTH .PREVIOUS .SECTION .SET SYMBOL
.SYMBOL

.SHORT .STRUCT .TEXT .TYPE .VAR

.WEAK

A0 A1 ABORT ABS AC

ALIGN8 ALIGN16 ALIGN24 AMNOP AN

AND ASHIFT ASL ASR ASSIGN

ASTAT AV0 AV1 AZ

B B0 B1 B2 B3

BANG BAR BITCLR BITMUX BITPOS

BITSET BITTGL BITTST BIT_XOR_AC BP

BREV BRF BRT BY BYTEOP1P

BYTEOP16M BYTEOP1NS BYTEOP16P BYTEOP2P

BYTEOP3P BYTEPACK BYTEUNPACK BXOR BXORSHIFT

CALL CARET CC CLI CLIP

CO CODE COLON COMMA CSYNC

DATA

DEPOSIT DISALGNEXCPT DIVSDEPOSIT

DOZE DIVQ DIVS DOT EMUCAUSE

EMUEXCPT EXCAUSE EXCPT EXPADJ EXTRACT

FEXT FEXTSX FLUSH FLUSHINV FP

Table 1-11. Blackfin Processor Assembler Keywords (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-49

Assembler

FU GE GF GT

H HI HLT HWERRCAUSE

I0 I1 I2 I3 IDLE

IDLE_REQ IFLUSH IH INTRP IS

ISS2 IU JUMP JUMP.L JUMP.S

L LB0 LB1 LC0 LC1

LE LENGTH LINK LJUMP LMAX

LMIN LO LOOP LOOP_BEGIN LOOP_END

LPAREN LSETUP LSHIFT LT LT0

LT1 LZ

M M0 M1 M2 M3

MAX MIN MINUS MNOP MUNOP

NEG NO_INIT NOP NOT NS

ONES OR OUTC

P0 P1 P2 P3 P4

P5 PACK PC PRNT PERCENT

PLUS PREFETCH

R R0 R1 R2 R3

R32 R4 R5 R6 R7

RAISE RBRACE RBRACK RETI RETN

RETS RETX RND RND12 RND20

RNDH RNDL ROL ROR ROT

ROT_L_AC ROT_R_AC RPAREN RSDL RTE

RTI RTN RTS RTX RUNTIME_INIT

R1_COLON0 RETAIN_NAME

S S2RND SAA SAA1H SAA1L

SAA2H SAA2L SAA3H SAA3L SAT

Table 1-11. Blackfin Processor Assembler Keywords (Cont’d)

Assembler Syntax Reference

1-50 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Extend these sets of keywords with symbols that declare sections,
variables, constants, and address labels. When defining symbols in
assembly source code, follow these conventions:

• Define symbols that are unique within the file in which they are
declared.

If you use a symbol in more than one file, use the .GLOBAL assembly
directive to export the symbol from the file in which it is defined.
Then use the .EXTERN assembly directive to import the symbol into
other files.

• Begin symbols with alphabetic characters.

Symbols can use alphabetic characters (A—Z and a—z), digits (0—9),
and the special characters “$” and “_” (dollar sign and underscore)
as well as “.” (dot).

SCO SEARCH SHT_TYPE SIGN SIGNBITS

SLASH SLEEP SKPF SKPT SP

SS SSF SSF_RND_HI SSF_TRUNC SSF_TRUNC_HI

SSF_RND SSF_TRUNC SSYN STI STRUCT

STT_TYPE SU SYSCFG

T TESTSET TFU TH TL

TST UNLINK UNLNK UNRAISE UU

V VIT_MAX

W W32 WEAK

X XB XH XOR Z

ZERO_INIT

ADI _DATE_ _FILE_ _LastSuffix_ _LINE_

TIME

Table 1-11. Blackfin Processor Assembler Keywords (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-51

Assembler

Symbols are case sensitive; so input_addr and INPUT_ADDR define
unique variables.

The dot, point, or period “.” as the first character of a symbol
triggers special behavior in the VisualDSP++ environment.
A symbol with a “.” as the first character cannot have a digit as the
second character. Such symbols will not appear in the symbol table,
which is accessible in the debugger. A symbol name in which the
first two characters are dots will not appear even in the symbol
table of the object.

The compiler and run-time libraries prepend “_” to avoid using
symbols in the user namespace that begin with an alphabetic
character.

• Do not use a reserved keyword to define a symbol.

• Match source and LDF sections’ symbols.

Ensure that .SECTION name symbols do not conflict with the
linker’s keywords in the .ldf file. The linker uses sections’ name
symbols to place code and data in the processor’s memory.
For details, see the VisualDSP++ 5.0 Linker and Utilities Manual.

Ensure that .SECTION name symbols do not begin with the “.”
(dot).

• Terminate the definition of address label symbols with a colon (:).

• The reserved word list for processors includes some keywords with
commonly used spellings; therefore, ensure correct syntax spelling.

Address label symbols may appear at the beginning of an instruction line
or stand-alone on the preceding line.

Assembler Syntax Reference

1-52 VisualDSP++ 5.0 Assembler and Preprocessor Manual

The following disassociated lines of code demonstrate symbol usage.

.BYTE2 xoperand; // xoperand is a 16-bit variable

.BYTE4 input_array[10]; // input_array is a 32-bit wide

// data buffer with 10 elements
sub_routine_1: // sub_routine_1 is a label

.SECTION kernel; // kernel is a section name

Assembler Expressions
The assembler can evaluate simple expressions in source code. The
assembler supports two types of expressions: constant expressions and
symbolic expressions.

Constant Expressions

A constant expression is acceptable where a numeric value is expected in
an assembly instruction or in a preprocessor command. Constant expres-
sions contain an arithmetic or logical operation on two or more numeric
constants. For example,

2.9e-5 + 1.29

(128 - 48) / 3

0x55&0x0f

7.6r – 0.8r

For information about fraction type support, refer to “Fractional Type
Support” on page 1-59.

Symbolic Expressions

Symbolic expressions contain symbols, whose values may not be known
until link-time. For example,

data/8

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-53

Assembler

(data_buffer1 + data_buffer2) & 0xF

strtup + 2

data_buffer1 + LENGTH(data_buffer2)*2

Symbols in this type of expression are data variables, data buffers, and
program labels. In the first three examples above, the symbol name repre-
sents the address of the symbol. The fourth example combines that
meaning of a symbol with a use of the length operator (see Table 1-13).

Assembler Operators
Table 1-12 lists the assembler’s numeric and bitwise operators used in
constant expressions and address expressions. These operators are listed in
group order from highest precedence to lowest precedence. Operators
with the highest precedence are evaluated first. When two operators have
the same precedence, the assembler evaluates the left-most operator first.

Assembler Syntax Reference

1-54 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Relational operators are supported only in relational expressions in
conditional assembly, as described in “Conditional Assembly Directives”
on page 1-62.

If right-shifting a negative value, ones are shifted in from the MSB,
which preserves the sign bit.

The assembler also supports special operators. Table 1-13 lists and
describes special operators used in constant and address expressions.

The ADDRESS and LENGTH operators can be used with external symbols—
apply them to symbols that are defined in other sections as .GLOBAL
symbols.

Table 1-12. Operator Precedence

Operator Usage Description Designation Processors

(expression) expression in parentheses
evaluates first

Parentheses All

~
-

Ones complement
Unary minus

Tilde
Minus

All

*
/
%

Multiply
Divide
Modulus

Asterisk
Slash
Percentage

All

+
-

Addition
Subtraction

Plus
Minus

All

<<
>>

Shift left
Shift right

All

& Bitwise AND All

| Bitwise inclusive OR All

^ Bitwise exclusive OR TigerSHARC and
SHARC

&& Logical AND TigerSHARC only

|| Logical OR TigerSHARC only

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-55

Assembler

Blackfin Processor Example

The following example demonstrates how Blackfin assembler operators are
used to load the length and address information into registers.

#define n 20

...

.SECTION data1; // data section

.VAR real_data [n]; // n=number of input samples

.SECTION program; // code section

P0.L = real_data;

P0.H = real_data;

P1=LENGTH(real_data); // buffer's length

LOOP loop1 LC0=P1;

LOOP_BEGIN loop1;

R0=[P0++]; // get next sample

...

LOOP_END loop1;

Table 1-13. Special Assembler Operators

Operator Usage Description

ADDRESS(symbol) Address of symbol
Note: Used with SHARC and TigerSHARC assemblers only.

BITPOS(constant) Bit position (Blackfin processors ONLY)

HI(expression)
LO(expression)

Extracts the most significant 16 bits of expression.
Extracts the least significant 16 bits of expression.
Note: Used with the Blackfin assembler ONLY where HI/LO
replaces the ADRRESS() operator. The expression in the HI and
LO operators can be either symbolic or constant.

LENGTH(symbol) Length of symbol in number of elements (in a buffer/array)

symbol Address pointer to symbol

Assembler Syntax Reference

1-56 VisualDSP++ 5.0 Assembler and Preprocessor Manual

The code fragment above initializes P0 and P1 to the base address and
length, respectively, of the real_data buffer. The loop is executed 20
times.

The BITPOS() operator takes a bit constant (with one bit set) and returns
the position of the bit. Therefore, BITPOS(0x10) would return 4 and
BITPOS(0x80) would return 7. For example,

#define DLAB 0x80

#define EPS 0x10

R0 = DLAB | EPS (z);

cc = BITSET (R0, BITPOS(DLAB));

TigerSHARC Processor Example

The following example demonstrates how assembler operators are used to
load the length and address information into registers (when setting up
circular buffers in TigerSHARC processors).

.SECTION data1; // Data segment

.VAR real_data[n]; // n = number of input samples

...

.SECTION program; // Code segment

// Load the base address of

// the circular buffer

JB3 = real_data;;

// Load the index

J3=real_data;;

// Load the circular buffer length

JL3 = LENGTH(real_data);;

// Set loop counter 0 with buffer length

LC0 = JL3;;

start:

XR0 = CB [J3 += 1];; // Read data from the circular buffer

if NLC0E, jump start;;

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-57

Assembler

The code fragment above initializes JB3 and JL3 to the base address and
length, respectively, of the real_data circular buffer. The buffer length
value contained in JL3 determines when addressing wraps around the top
of the buffer. For further information on circular buffers, refer to the
Hardware Reference of the target processor.

SHARC Processor Example

The following code example determines the base address and length of the
real_data circular buffer. The buffer’s length value (contained in L5)
determines when addressing wraps around to the top of the buffer (when
setting up circular buffers in SHARC processors). For further information
on circular buffers, refer to the Hardware Reference of the target processor.

.SECTION/DM seg_dmda; // data segment

.VAR real_data[n]; // n=number of input samples

...

.SECTION/PM seg_pmco; // code segment

B5=real_data; // buffer base address

// I5 loads automatically

L5=length(real_data); // buffer’s length

M6=1; // post-modify I5 by 1

LCNTR=length(real_data)

,DO loopend UNTIL LCE;

// loop counter=buffer’s length

F0=DM(I5,M6); // get next sample

...

loopend:

...

Although the SHARC assembler accepts the source code written
with the legacy @ operator, it is recommended to use LENGTH() in
place of @.

Assembler Syntax Reference

1-58 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Numeric Formats
Depending on the processor architectures, the assemblers support binary,
decimal, hexadecimal, floating-point, and fractional numeric formats
(bases) within expressions and assembly instructions. Table 1-14 describes
the notation conventions used by the assembler to distinguish between
numeric formats.

Due to the support for b# and B# binary notation, the preprocessor
stringization functionality is turned off, by default, to avoid
possible undesired stringization.
For more information, refer to “# (Argument)” on page 2-39, the
preprocessor’s “-stringize” command-line switch (on page 2-53),
and the assembler’s “-flags-pp -opt1 [,-opt2...]” command-line
switch (on page 1-155).

Representation of Constants in Blackfin

The Blackfin assembler keeps an internal 32-bit signed representation
of all constant values. Keep this in mind when working with immediate
values. The immediate value is used by the assembler to determine the
instruction length (16 or 32 bit). The assembler selects the smallest
opcode that can accommodate the immediate value.

Table 1-14. Numeric Formats

Convention Description

0xnumber The “0x” prefix indicates a hexadecimal number

B#number
b#number

The “B#” or “b#” prefix indicates a binary number

number.number[e {+/-} number] Entry for floating-point number

number No prefix and no decimal point indicates a decimal number

numberr The “r” suffix indicates a fractional number

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-59

Assembler

If there is no opcode that can accommodate the value, semantic error
ea5003 is reported.

Examples:

R0 = -64;//16-bit instruction: -64 fits into 7-bit immediate

value.

R0 = 0xBF;//32-bit instruction: 191 fits into 16-bit immediate

value.

R0 = 0xFFBF;//ERROR:65471 doesn’t fit into 7 or 16-bit immediate

values.

R0 = 0xFFFFFFBF;//32-bit instruction: -65 fits into 16 bit imme-

diate value.

R0 = 0x8000;//ERROR:32768 doesn’t fit into 7 or 16-bit immediate

values.

Fractional Type Support

Fractional (fract) constants are specially marked floating-point constants
to be represented in fixed-point format. A fract constant uses the float-
ing-point representation with a trailing “r”, where r stands for fract.

The legal range is [–1…1). This means the values must be greater than or
equal to –1 and less than 1. Fracts are represented as signed values.

For example,

.VAR myFracts[] = {0.5r, -0.5e-4r, -0.25e-3r, 0.875r};

/* Constants are examples of legal fracts */

.VAR OutOfRangeFract = 1.5r;

/* [Error ...] Fract constant '1.5r' is out of range.

Assembler Syntax Reference

1-60 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Fract constants must be greater than or equal to -1

and less than 1. */

In Blackfin processors, fract 1.15 is a default. Use a /R32 qualifier
(in .BYTE4/R32 or .VAR/R32) to support 32-bit initialization for use
with 1.31 fracts.

1.31 Fracts

Fracts supported by Analog Devices processors use 1.31 format, which
means a sign bit and “31 bits of fraction”. This is –1 to +1–2**31.
For example, 1.31 maps the constant 0.5r to 2**31.

The conversion formula used by processors to convert from floating-point
format to fixed-point format uses a scale factor of 31.

For example,

.VAR/R32 myFract = 0.5r;

// Fract output for 0.5r is 0x4000 0000

// sign bit + 31 bits

// 0100 0000 0000 0000 0000 0000 0000 0000

// 4 0 0 0 0 0 0 0 = 0x4000 0000 =

.5r

.VAR/R32 myFract = -1.0r;

// Fract output for -1.0r is 0x8000 0000

// sign bit + 31 bits

// 1000 0000 0000 0000 0000 0000 0000 0000

// 8 0 0 0 0 0 0 0 = 0x8000

0000 = -1.0r

.VAR/R32 myFract = -1.72471041E-03r;

// Fract output for -1.72471041E-03 is 0xFFC77C15

// sign bit + 31 bits

// 1111 1111 1100 0111 0111 1100 0001 0101

// F F C 7 7 C 1 5

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-61

Assembler

1.0r Special Case

1.0r is out-of-the-range fract. Specify 0x7FFF FFFF for the closest
approximation of 1.0r within the 1.31 representation.

Fractional Arithmetic

The assembler provides support for arithmetic expressions using
operations on fractional constants, consistent with the support for other
numeric types in constant expressions, as described in “Assembler Expres-
sions” on page 1-52.

The internal (intermediate) representation for expression evaluation is a
double floating-point value. Fract range checking is deferred until the
expression is evaluated. For example,

#define fromSomewhereElse 0.875r

.SECTION data1;

.VAR localOne = fromSomewhereElse + 0.005r;

// Result .88r is within the legal range

.VAR xyz = 1.5r -0.9r;

// Result .6r is within the legal range

.VAR abc = 1.5r; // Error: 1.5r out of range

Mixed Type Arithmetic

The assembler does not support arithmetic between fracts and integers.
For example,

.SECTION data1;

.VAR myFract = 1 - 0.5r;

[Error ea1998] "fract.asm":2 User Error: Illegal

mixing of types in expression.

Assembler Syntax Reference

1-62 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Comment Conventions
The assemblers support C and C++ style formats for inserting comments
in assembly sources. The assemblers do not support nested comments.
Table 1-15 lists and describes assembler comment conventions.

Conditional Assembly Directives
Conditional assembly directives are used for evaluation of assembly-time
constants using relational expressions. The expressions may include
relational and logical operations. In addition to integer arithmetic, the
operands may be the C structs in the SIZEOF() and OFFSETOF() assembly
built-in functions that return integers.

The conditional assembly directives include:

• .IF constant-relational-expression;

• .ELIF constant-relational-expression;

• .ELSE;

• .ENDIF;

Conditional assembly blocks begin with an .IF directive and end with
an .ENDIF directive. Table 1-16 shows examples of conditional directives.

Optionally, any number of .ELIF and .ELSE directive pairs may appear
within a pair of .IF and .ENDIF directives. The conditional directives are
each terminated with a semi-colon “;”, just like all existing assembler

Table 1-15. Comment Conventions

Convention Description

/* comment */ A “/* */” string encloses a multiple-line comment

// comment A pair of slashes “//” begin a single-line comment

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-63

Assembler

directives. Conditional directives do not have to appear alone on a line.
These directives are in addition to the C-style #if, #elif, #else, and
#endif preprocessing directives.

The .IF, .ELSE, .ELIF, and .ENDIF directives (in any case) are
reserved keywords.

The .IF conditional assembly directive must be used to query about C
structs in assembly using the SIZEOF() and/or OFFSETOF() built-in
functions. These built-ins are evaluated at assembly time, so they cannot
appear in expressions in #if preprocessor directives.

In addition, the SIZEOF() and OFFSETOF() built-in functions (see “C
Struct Support in Assembly Built-In Functions” on page 1-65) can be
used in relational expressions. Different code sequences can be included
based on the result of the expression.

For example, SIZEOF(struct/typedef/C_base_type) is permitted.

Table 1-16. Relational Operators for Conditional Assembly

Operato
r

Purpose Conditional Directive Examples

! Not .IF !0;

> Greater than .IF (SIZEOF(myStruct) > 16);

>= Greater than or equal to .IF (SIZEOF(myStruct) >= 16);

< Less than .IF (SIZEOF(myStruct) < 16);

<= Less than or equal to .IF (SIZEOF(myStruct) <= 16);

== Equality .IF (8 == SIZEOF(myStruct));

!= Not equal .IF (8 != SIZEOF(myStruct));

|| Logical OR .IF (2 !=4) || (5 == 5);

&& Logical AND .IF (SIZEOF(char) == 2 && SIZEOF(int) == 4);

Assembler Syntax Reference

1-64 VisualDSP++ 5.0 Assembler and Preprocessor Manual

The assembler supports nested conditional directives. The outer
conditional result propagates to the inner condition, just as it does in C
preprocessing.

Assembler directives are distinct from preprocessor directives, as follows:

• The # directives are evaluated during preprocessing by the
preprocessor. Therefore, preprocessor #if directives cannot use
assembler built-ins (see “C Struct Support in Assembly Built-In
Functions” on page 1-65).

• The conditional assembly directives are processed by the assembler
in a later pass. Therefore, you are able to write a relational or
logical expression whose value depends on the value of a #define.
For example,

.IF tryit == 2;

<some code>

.ELIF tryit >= 3;

<some more code>

.ELSE;

<some more code>

.ENDIF;

If you have “#define tryit 2”, the code <some code> will
assemble, and <some more code> will not be assembled.

• There are no parallel assembler directives for C-style directives
#define, #include, #ifdef, #if defined(name), #ifndef, and so
on.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-65

Assembler

C Struct Support in Assembly Built-In Functions
The assemblers support built-in functions that enable you to pass infor-
mation obtained from the imported C struct layouts. The assemblers
currently support two built-in functions: OFFSETOF() and SIZEOF().

OFFSETOF Built-In Function

The OFFSETOF() built-in function is used to calculate the offset of a
specified member from the beginning of its parent data structure.

OFFSETOF(struct/typedef,memberName);

where:

struct/typedef – a struct VAR or a typedef can be supplied as the first
argument

memberName – a member name within the struct or typedef (second
argument)

For SHARC and TigerSHARC processors, OFFSETOF() units are in
words. For Blackfin processors, OFFSETOF() units are in bytes.

SIZEOF Built-In Function

The SIZEOF() built-in function returns the amount of storage associated
with an imported C struct or data member. It provides functionality
similar to its C counterpart.

SIZEOF(struct/typedef/C_base_type);

where:

The SIZEOF() function takes a symbolic reference as its single argument.
A symbolic reference is a name followed by none or several qualifiers
to members.

Assembler Syntax Reference

1-66 VisualDSP++ 5.0 Assembler and Preprocessor Manual

The SIZEOF() function gives the amount of storage associated with:

• An aggregate type (structure)

• A C base type (int, char, and so on)

• A member of a structure (any type)

For example (Blackfin processor code):

.IMPORT "Celebrity.h";

.EXTERN STRUCT Celebrity StNick;

L3 = SIZEOF(Celebrity); // typedef

L3 = SIZEOF(StNick); // struct var of typedef Celebrity

L3 = SIZEOF(char); // C built-in type

L3 = SIZEOF(StNick->Town); // member of a struct var

L3 = SIZEOF(Celebrity->Town); // member of a struct typedef

The SIZEOF() built-in function returns the size in the units appro-
priate for its processor. For SHARC and TigerSHARC processors,
units are in words. For Blackfin processors, units are in bytes.

When applied to a structure type or variable, SIZEOF() returns the actual
size, which may include padding bytes inserted for alignment. When
applied to a statically dimensioned array, SIZEOF() returns the size of the
entire array.

Struct References
A reference to a struct VAR provides an absolute address. For a fully
qualified reference to a member, the address is offset to the correct loca-
tion within the struct. The assembler syntax for struct references is “->”.

The following example references the address of Member5 located within
myStruct.

myStruct->Member5

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-67

Assembler

If the struct layout changes, there is no need to change the reference.
The assembler recalculates the offset when the source is reassembled with
the updated header.

Nested struct references are supported. For example,

myStruct->nestedRef->AnotherMember

Unlike struct members in C, struct members in the assembler
are always referenced with “->” (not “.”) because “.” is a legal
character in identifiers in assembly and is not available as a struct
reference.

References within nested structures are permitted. A nested struct
definition can be provided in a single reference in assembly code, and a
nested struct via a pointer type requires more than one instruction.
Use the OFFSETOF() built-in function to avoid hard-coded offsets that may
become invalid if the struct layout changes in the future.

Following are two nested struct examples for .IMPORT "CHeaderFile.h".

Example 1:
Nested Reference Within the Struct Definition with
Appropriate C Declarations

C Code

struct Location {

char Town[16];

char State[16];

};

struct myStructTag {

int field1;

struct Location NestedOne;

};

Assembler Syntax Reference

1-68 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Assembly Code (for Blackfin Processors)

.EXTERN STRUCT myStructTag _myStruct;

P3.L = LO(_myStruct->NestedOne->State);

P3.H = HI(_myStruct->NestedOne->State);

Example 2:
Nested Reference When Nested via a Pointer with
Appropriate C Declarations

When nested via a pointer, myStructTagWithPtr (which has pNestedOne)
uses pointer register offset instructions.

C Code

// from C header

struct Location {

char Town[16];

char State[16];

};

struct myStructTagWithPtr {

int field1;

struct Location *pNestedOne;

};

Assembly Code (for Blackfin Processors)

// in assembly file

.EXTERN STRUCT myStructTagWithPtr _myStructWithPtr;

P1.L = LO(_myStructWithPtr->pNestedOne);

P1.H = HI(_myStructWithPtr->pNestedOne);

P0 = [P1 + OFFSETOF(Location,State)];

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-69

Assembler

Assembler Directives
Directives in an assembly source file control the assembly process. Unlike
assembly instructions, directives do not produce opcodes during assembly.
Use the following general syntax for assembler directives

.directive [/qualifiers | arguments];

Each assembler directive starts with a period (.) and ends with a
semicolon (;). Some directives take qualifiers and arguments. A directive’s
qualifier immediately follows the directive and is separated by a slash (/);
arguments follow qualifiers. Assembler directives can be uppercase or
lowercase; uppercase distinguishes directives from other symbols in your
source code.

Table 1-17 lists all currently supported assembler directives. A description
of each directive appears in the following sections. These directives were
added for GNU compatibility.

Table 1-17. Assembler Directive Summary

Directive Description

.ALIGN
(see on page 1-74)

Specifies an alignment requirement for data or code

.ALIGN_CODE
(see on page 1-76)

Specifies an alignment requirement for code.
NOTE: TigerSHARC processors ONLY.

.ASCII
(see on page 1-78)

Initializes ASCII strings
NOTE: Blackfin processors ONLY.

.BSS Equivalent to .SECTION/zero_init bsz;
Refer to “.SECTION, Declare a Memory Section” on
page 1-122 for more information.
NOTE: Blackfin processors ONLY.

.BYTE

.BYTE2

.BYTE4
(see on page 1-79)

Defines and initializes one-, two-, and four-byte data objects,
respectively.
NOTE: Blackfin processors ONLY.

Assembler Syntax Reference

1-70 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.DATA Equivalent to .SECTION data1;
Refer to “.SECTION, Declare a Memory Section” on
page 1-122 for more information.
NOTE: Blackfin processors ONLY.

.ELSE
(see on page 1-62)

Conditional assembly directive

.ENDIF
(see on page 1-62)

Conditional assembly directive

.ENDSEG
(see on page 1-128)

Legacy directive. Marks the end of a section.
Used with legacy directive .SEGMENT that begins a section.
NOTE: SHARC processors ONLY.

.EXTERN
(see on page 1-83)

Allows reference to a global symbol

.EXTERN STRUCT
(see on page 1-84)

Allows reference to a global symbol (struct) that was defined
in another file

.FILE
(see on page 1-86)

Overrides filename given on the command line. Used by C
compiler

.FILE_ATTR
(see on page 1-87)

Creates a attribute in the generated object file

.GLOBAL
(see on page 1-88)

Changes a symbol’s scope from local to global

.GLOBL Equivalent to .GLOBAL.
Refer to “.GLOBAL, Make a Symbol Available Globally” on
page 1-88 for more information.
NOTE: Blackfin processors ONLY.

.IF
(see on page 1-62)

Conditional assembly directive

.IMPORT
(see on page 1-90)

Provides the assembler with the structure layout (C struct)
information

.INC/BINARY
(see on page 1-93)

Includes the content of file at the current location.

Table 1-17. Assembler Directive Summary (Cont’d)

Directive Description

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-71

Assembler

.INCBIN Equivalent to .INC/BINARY
Refer to “.INC/BINARY, Include Contents of a File” on
page 1-93 for more information.
NOTE: Blackfin processors ONLY.

.LEFTMARGIN
(see on page 1-94)

Defines the width of the left margin of a listing

.LIST/.NOLIST
(see on page 1-95)

Starts listing of source lines

.LIST_DATA(
see on page 1-96)

Starts listing of data opcodes

.LIST_DATFILE
(see on page 1-97)

Starts listing of data initialization files

.LIST_DEFTAB
(see on page 1-98)

Sets the default tab width for listings

.LIST_LOCTAB
(see on page 1-100)

Sets the local tab width for listings

.LIST_WRAPDATA
(see on page 1-101)

Starts wrapping opcodes that don’t fit listing column

.LONG
(see on page 1-102)

Supports four-byte data initializer lists for GNU compatibility.
NOTE: Blackfin processors ONLY.

.MESSAGE
(see on page 1-103)

Alters the severity of an error, warning or informational mes-
sage generated by the assembler

.NEWPAGE
(see on page 1-107)

Inserts a page break in a listing

.NOLIST
(see on page 1-95)

Stops listing of source lines

.NOLIST_DATA
(see on page 1-96)

Stops listing of data opcodes

.NOLIST_DATFILE
(see on page 1-97)

Stops listing of data initialization files

Table 1-17. Assembler Directive Summary (Cont’d)

Directive Description

Assembler Syntax Reference

1-72 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.NOLIST_WRAPDATA
(see on page 1-101)

Stops wrapping opcodes that do not fit listing column

.PAGELENGTH
(see on page 1-108)

Defines the length of a listing page

.PAGEWIDTH
(see on page 1-109)

Defines the width of a listing page

.PORT
(see on page 1-111)

Legacy directive. Declares a memory-mapped I/O port.
NOTE: SHARC processors ONLY.

.PRECISION
(see on page 1-112)

Defines the number of significant bits in a floating-point value.
NOTE: SHARC processors ONLY.

.PREVIOUS
(see on page 1-114)

Reverts to a previously described .SECTION

.PRIORITY
(see on page 1-115)

Allows prioritized symbol mapping in the linker

.REFERENCE
(see on page 1-118)

Provides better information in an X-REF file.
Refer to “.REFERENCE, Provide Better Info in an X-REF
File” on page 1-118 for more information.
NOTE: Blackfin processors ONLY.

.RETAIN_NAME
(see on page 1-118)

Stops the linker from eliminating a symbol.

.ROUND_NEAREST
(see on page 1-119)

Specifies the Round-to-Nearest mode.
NOTE: SHARC processors ONLY.

.ROUND_MINUS
(see on page 1-119)

Specifies the Round-to-Negative Infinity mode.
NOTE: SHARC processors ONLY.

.ROUND_PLUS
(see on page 1-119)

Specifies the Round-to-Positive Infinity mode.
NOTE: SHARC processors ONLY.

.ROUND_ZERO
(see on page 1-119)

Specifies the Round-to-Zero mode.
NOTE: SHARC processors ONLY.

.SECTION
(see on page 1-122)

Marks the beginning of a section

Table 1-17. Assembler Directive Summary (Cont’d)

Directive Description

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-73

Assembler

.SEGMENT
(see on page 1-128)

Legacy directive. Replaced with the .SECTION directive.
NOTE: SHARC processors ONLY.

.SEPARATE_MEM_SEGMENTS
(see on page 1-128)

Specifies that two buffers should be placed into different
memory segments by the linker.
NOTE: TigerSHARC processors ONLY.

.SET
(see on page 1-129

Sets symbolic aliases

.SHORT
(see on page 1-129)

Supports two-byte data initializer lists for GNU compatibility.
NOTE: Blackfin processors ONLY.

.STRUCT
(see on page 1-130)

Defines and initializes data objects based on C typedefs from
.IMPORT C header files

.TEXT Equivalent to .SECTION program;
Refer to “.SECTION, Declare a Memory Section” on
page 1-122 for more information.
NOTE: Blackfin processors ONLY.

.TYPE
(see on page 1-134)

Changes the default data type of a symbol; used by C compiler

.VAR
(see on page 1-135)

Defines and initializes 32-bit data objects

.WEAK
(see on page 1-140)

Creates a weak definition or reference

Table 1-17. Assembler Directive Summary (Cont’d)

Directive Description

Assembler Syntax Reference

1-74 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.ALIGN, Specify an Address Alignment

The .ALIGN directive forces the address alignment of an instruction or data
item. Use it to ensure section alignments in the .ldf file. You may use
.ALIGN to ensure the alignment of the first element of a section, therefore
providing the alignment of the object section (“INPUT SECTION” to the
linker).

You may also use the INPUT_SECTION_ALIGN(#number) LDF command
(in the .ldf file) to force all the following input sections to the specified
alignment. Refer to the VisualDSP++ 5.0 Linker and Utilities Manual for
more information on section alignment.

Syntax:

.ALIGN expression;

where

expression – evaluates to an integer. It specifies an alignment require-
ment; its value must be a power of 2. When aligning a data item or
instruction, the assembler adjusts the address of the current location
counter to the next address that can be divided by the value of
expression, with no remainder. The expression set to 0 or 1 signifies no
address alignment requirement.

The linker stops allocating padding for symbols aligned by 16 or more.

In the absence of the .ALIGN directive, the default address
alignment is 1.

Example

...

.ALIGN 1; // no alignment requirement

...

.SECTION data1;

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-75

Assembler

.ALIGN 2;

.VAR single;

/* aligns the data item on the word boundary,

at the location with the address value that can be

evenly divided by 2 */

.ALIGN 4;

.VAR samples1[100]="data1.dat";

/* aligns the first data item on the double-word
boundary, at the location with the address value

that can be evenly divided by 4;

advances other data items consecutively */

The Blackfin assembler uses .BYTE instead of .VAR.

Assembler Syntax Reference

1-76 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.ALIGN_CODE, Specify an Address Alignment

Used with TigerSHARC processors ONLY.

The .ALIGN_CODE directive forces the address alignment of an instruction
within the .SECTION in which it is used. It is similar to the .ALIGN
directive, but whereas .ALIGN causes the code to be padded with 0s,
.ALIGN_CODE pads with NOPs. The .ALIGN_CODE directive is used when
aligning instructions.

Refer to Chapter 2 “Linker” in the VisualDSP++ 5.0 Linker and Utilities
Manual for more information on section alignment.

Syntax:

.ALIGN_CODE expression;

where

expression – evaluates to an integer. It specifies an alignment require-
ment; its value must be a power of 2. In TigerSHARC processors, the
expression value is usually 4. When aligning a data item or instruction,
the assembler adjusts the address of the current location counter to the
next address that is divisible by the value of the expression. The expres-
sion set to 0 or 1 signifies no address alignment requirement.

In the absence of the .ALIGN_CODE directive, the default address
alignment is 1.

Example

.ALIGN_CODE 0; /* no alignment requirement */

...

.ALIGN_CODE 1; /* no alignment requirement */

...

.SECTION program;

.ALIGN_CODE 4;

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-77

Assembler

JUMP LABEL;;

/* Jump instruction aligned to four word boundary.

If necessary, padding will be done with NOPs */

Assembler Syntax Reference

1-78 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.ASCII

Used with Blackfin processors ONLY.

The .ASCII directive initializes a data location with one or more charac-
ters from a double-quoted ASCII string. This is equivalent to the .BYTE
directive. Note that the syntax differs from the .BYTE directive as follows:

• There is no “=” sign

• The string is enclosed in double-quotes, not single quotes

Syntax:

.ASCII “string” ;

Example:

.SECTION data1;

ASCII_String:

.TYPE ASCII_String,STT_OBJECT;

.ASCII "ABCD";

.ASCII_String.end:

Byte_String:

.TYPE Byte_String,STT_OBJECT;

.Byte = ‘ABCD’;

.Byte_String.end:

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-79

Assembler

.BYTE, Declare a Byte Data Variable or Buffer

Used with Blackfin processors ONLY.

The .BYTE, .BYTE2, and .BYTE4 directives declare and optionally initialize
one-, two-, and four-byte data objects, respectively. Note that the .BYTE4
directive performs the same function as the .VAR directive.

Syntax:

When declaring and/or initializing memory variables or buffer elements,
use one of these forms:

.BYTE varName1[,varName2,…];

.BYTE = initExpression1, initExpression2,…;

.BYTE varName1 = initExpression,varName2 = initExpression2,…

.BYTE bufferName[] = initExpression1, initExpression2,…;

.BYTE bufferName[] = "fileName";

.BYTE bufferName[length] = " fileName";

.BYTE bufferName[length] = initExpression1, initExpression2,…;

where:

varName – user-defined symbols that name variables

bufferName – user-defined symbols that name buffers

fileName – indicates that the elements of a buffer get their initial values
from the fileName data file. The <fileName> parameter can consist of the
actual name and path specification for the data file. If the initialization file
is in current directory of your operating system, only the fileName need
be given inside double quote (" ") characters. Note that when reading in a
data file, the assembler reads in whitespace-separated lists of decimal digits
or hex strings.

Assembler Syntax Reference

1-80 VisualDSP++ 5.0 Assembler and Preprocessor Manual

If the file name is not found in the current directory, the assembler looks
in the directories in the processor include path. You may use the -I
switch (see on page 1-157) to add a directory to the processor include
path.

Initializing from files is useful for loading buffers with data, such as filter
coefficients or FFT phase rotation factors that are generated by other
programs. The assembler determines how the values are stored in memory
when it reads the data files.

Ellipsis (…) – represents a comma-delimited list of parameters.

initExpressions parameters – sets initial values for variables and buffer
elements

The optional [length] parameter defines the length of the
associated buffer in words. The number of initialization elements
defines length of an implicit-size buffer. The brackets [] that
enclose the optional [length] are required. For more information,
see the following .BYTE examples.

In addition, use a /R32 qualifier (.BYTE4/R32) to support 32-bit
initialization for use with 1.31 fracts (see on page 1-59).

The following lines of code demonstrate .BYTE directives:

Buffer1:

.TYPE Buffer1, STT_OBJECT;

.BYTE = 5, 6, 7;

// initialize three 8-bit memory locations

// for data label Buffer1

.Buffer1.end:

.BYTE samples[] = 123, 124, 125, 126, 127;

// declare an implicit-length buffer and initialize it
// with five 1-byte constants

.BYTE4/R32 points[] = 1.01r, 1.02r, 1.03r;

// declare and initialize an implicit-length buffer

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-81

Assembler

// and initialize it with three 4-byte fract constants

.BYTE2 Ins, Outs, Remains;

// declare three 2-byte variables zero-initialized by

default

.BYTE4 demo_codes[100] = "inits.dat";

// declare a 100-location buffer and initialize it

// with the contents of the inits.dat file;

.BYTE2 taps=100;

// declare a 2-byte variable and initialize it to 100

.BYTE twiddles[10] = "phase.dat";

// declare a 10-location buffer and load the buffer

// with contents of the phase.dat file

.BYTE4/R32 Fract_Byte4_R32[] = "fr32FormatFract.dat";

When declaring or initializing variables with .BYTE, consider constraints
applied to the .VAR directive. The .VAR directive allocates and optionally
initializes 32-bit data objects. For information about the .VAR directive,
refer to information on page 1-135.

ASCII String Initialization Support

The assembler supports ASCII string initialization. This allows the full use
of the ASCII character set, including digits and special characters.

In Blackfin processors, ASCII initialization can be provided with .BYTE,
.BYTE2, or .VAR directives. The most likely use is the .BYTE directive where
each char is represented by one byte versus a .VAR directive in which each
char needs four bytes. The characters are stored in the upper byte of
32-bit words. The LSBs are cleared.

String initialization takes one of the following forms:

.BYTE symbolString[length] = ‘initString’, 0;

.BYTE symbolString [] = ’initString’, 0;

Note that the number of initialization characters defines the optional
length of a string (implicit-size initialization).

Assembler Syntax Reference

1-82 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Example:

.BYTE k[13] = ‘Hello world!’, 0;

.BYTE k[] = ‘Hello world!’, 0;

The trailing zero character is optional. It simulates ANSI-C string
representation.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-83

Assembler

.EXTERN, Refer to a Globally Available Symbol

The .EXTERN directive allows a code module to reference global data
structures, symbols, and so on that are declared as .GLOBAL in other files.
For additional information, see the .GLOBAL directive on page 1-88.

Syntax:

.EXTERN symbolName1[, symbolName2, …];

where:

symbolName – the name of a global symbol to import. A single .EXTERN
directive can reference any number of symbols on one line, separated by
commas.

Example:

.EXTERN coeffs;

// This code declares an external symbol to reference

// the global symbol "coeffs" declared in the example

// code in the .GLOBAL directive description.

Assembler Syntax Reference

1-84 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.EXTERN STRUCT, Refer to a Struct Defined Elsewhere

The .EXTERN STRUCT directive allows a code module to reference a struct
defined in another file. Code in the assembly file can then reference the
data members by name, just as if they were declared locally.

Syntax:

.EXTERN STRUCT typedef structvarName ;

where:

typedef – the type definition for a struct VAR

structvarName – a struct VAR name

The .EXTERN STRUCT directive specifies a struct symbol name declared
in another file. The naming conventions are the same for structs as for
variables and arrays:

• If a struct was declared in a C file, refer to it with a leading _.

• If a struct was declared in an .asm file, use the name “as is”,
no leading underscore (_) is necessary.

The .EXTERN STRUCT directive optionally accepts a list, such as:

.EXTERN STRUCT typedef structvarName [,STRUCT typedef structvar-
Name ...]

The key to the assembler knowing the layout is the .IMPORT directive and
the .EXTERN STRUCT directive associating the typedef with the struct VAR.
To reference a data structure declared in another file, use the .IMPORT
directive with the .EXTERN directive. This mechanism can be used for
structures defined in assembly source files as well as in C files.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-85

Assembler

The .EXTERN directive supports variables in the assembler. If the program
references struct members, .EXTERN STRUCT must be used because the
assembler must consult the struct layout to calculate the offset of the
struct members. If the program does not reference struct members, you
can use .EXTERN for struct VARs.

Example (SHARC code):

.IMPORT "MyCelebrities.h";

// 'Celebrity' is the typedef for struct var 'StNick'

// .EXTERN means that '_StNick' is referenced within this

// file, but not locally defined. This example assumes StNick

// was declared in a C file and it must be referenced with
// a leading underscore.

.EXTERN STRUCT Celebrity _StNick;

// "isSeniorCitizen" is one of the members of the 'Celebrity'

// type

P3.L = LO(_StNick->isSeniorCitizen);

P3.H = HI(_StNick->isSeniorCitizen);

Assembler Syntax Reference

1-86 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.FILE, Override the Name of a Source File

The .FILE directive overrides the name of the source file. This directive
may appear in the C/C++ compiler-generated assembly source file (.s).
The .FILE directive is used to ensure that the debugger has the correct file
name for the source file that had generated the object file.

Syntax:

.FILE “filename.ext”;

where:

filename – the name of the source file to associate with the object file.
The argument is enclosed in double quotes.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-87

Assembler

.FILE_ATTR, Create an Attribute in the Object File

The .FILE_ATTR directive instructs the assembler to place an attribute
in the object file which can be referenced in the .ldf file when linking.
See the VisualDSP++ 5.0 Linker and Utilities Manual for more
information.

Syntax:

.FILE_ATTR attrName1 [= attrVal1] [, attrName2 [= attrVal2]]

where:

attrName – the name of the attribute. Attribute names must follow the
same rules for naming symbols.

attrVal – sets the attribute to this value. If omitted, “1” is used. The value
must be double-quoted unless it follows the rules for naming symbols
(as described in “Assembler Keywords and Symbols” on page 1-39.

Examples:

.FILE_ATTR at1;

.FILE_ATTR at10=a123;

.FILE_ATTR at101=a123, at102,at103="999";

Assembler Syntax Reference

1-88 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.GLOBAL, Make a Symbol Available Globally

The .GLOBAL directive changes the scope of a symbol from local to global,
making the symbol available for reference in object files that are linked to
the current one.

By default, a symbol has local binding, meaning the linker can resolve
references to it only from the local file (that is, the same file in which it
is defined). It is visible only in the file in which it is declared. Local
symbols in different files can have the same name, and the linker considers
them to be independent entities. Global symbols are visible from other
files; all references from other files to an external symbol by the same
name will resolve to the same address and value, corresponding to the
single global definition of the symbol.

You change the default scope with the .GLOBAL directive. Once the symbol
is declared global, other files may refer to it with .EXTERN. For more infor-
mation, refer to the .EXTERN directive on page 1-83. Note that .GLOBAL
(or .WEAK) scope is required for symbols that appear in RESOLVE commands
in the .ldf file.

Syntax:

.GLOBAL symbolName1[, symbolName2,…];

where:

symbolName – the name of a global symbol. A single .GLOBAL directive may
define the global scope of any number of symbols on one line, separated
by commas.

Example (SHARC and TigerSHARC code):

.VAR coeffs[10]; // declares a buffer

.VAR taps=100; // declares a variable

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-89

Assembler

.GLOBAL coeffs, taps; // makes the buffer and the variable

// visible to other files

Example (Blackfin code):

.BYTE coeffs[10]; // declares a buffer

.BYTE4 taps=100; // declares a variable

.GLOBAL coeffs, taps; // makes the buffer and the variable

// visible to other files

Assembler Syntax Reference

1-90 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.IMPORT, Provide Structure Layout Information

The .IMPORT directive makes struct layouts visible inside an assembler
program. The .IMPORT directive provides the assembler with the following
structure layout information:

• The names of typedefs and structs available

• The name of each data member

• The sequence and offset of the data members

• Information as provided by the C compiler for the size of C base
types (alternatively, for the SIZEOF() C base types).

Syntax:

.IMPORT “headerfilename1” [, “headerfilename2” , …];

where:

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-91

Assembler

headerfilename – one or more comma-separated C header files enclosed
in double quotes.

The system processes each .IMPORT directive and each file specified
in an .IMPORT directive separately. Therefore, all type information
must be available within the context for the individual file.
If headerfile1.h defines a type referenced in headerfile2.h,
an attempt to import the second file into assembly will fail.

One solution is to have the assembler call the compiler once for the
set of import statements. The compiler then has all the information
it needs when processing the second header file.

In other words, create a third file to be imported in place of
headerfile2.h.

This file would simply consist of these lines:
#include "headerfile1.h"

#include "headerfile2.h"

The .IMPORT directive does not allocate space for a variable of this type.
Allocating space requires the .STRUCT directive (see on page 1-130).

The assembler takes advantage of knowing the struct layouts. The assem-
bly programmer may reference struct data members by name in assembler
source, as one would do in C. The assembler calculates the offsets within
the structure based on the size and sequence of the data members.

If the structure layout changes, the assembly code need not change. It just
needs to get the new layout from the header file, via the compiler. Make
dependencies track the .IMPORT header files and know when a rebuild is
needed. Use the -flags-compiler assembler switch (on page 1-153) to
pass options to the C compiler for .IMPORT header file compilations.

Assembler Syntax Reference

1-92 VisualDSP++ 5.0 Assembler and Preprocessor Manual

An .IMPORT directive with one or more .EXTERN directives allows code in
the module to refer to a struct variable that was declared and initialized
elsewhere. The C struct can be declared in C-compiled code or another
assembly file.

The .IMPORT directive with one or more .STRUCT directives declares and
initializes variables of that structure type within the assembler section in
which it appears.

For more information, refer to the .EXTERN directive on page 1-83 and the
.STRUCT directive on page 1-130.

Example:

.IMPORT "CHeaderFile.h";

.IMPORT "ACME_IIir.h","ACME_IFir.h";

.SECTION program;

// ... code that uses CHeaderFile, ACME_IIir, and

// ACME_IFir C structs

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-93

Assembler

.INC/BINARY, Include Contents of a File

The .INC/BINARY directive includes the content of file at the current
location. You can control the search paths used via the -i command-line
switch (on page 1-157).

Syntax:

.INC/BINARY [symbol =] "filename" [,skip [,count]] ;

.INC/BINARY [symbol[] =] "filename" [,skip [,count]] ;

where:

symbol – the name of a symbol to associate with the data being included
from the file

filename – the name of the file to include. The argument is enclosed in
double quotes.

The skip argument skips a number of bytes from the start of the file.

The count argument indicates the maximum number of bytes to read.

Example:

.SECTION data1;

.VAR jim;

.INC/BINARY sym[] = "bert",10,6;

.VAR fred;

.INC/BINARY Image1[] = "photos/Picture1.jpg";

Assembler Syntax Reference

1-94 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.LEFTMARGIN, Set the Margin Width of a Listing File

The .LEFTMARGIN directive sets the margin width of a listing page.
It specifies the number of empty spaces at the left margin of the listing file
(.lst), which the assembler produces when you use the -l switch. In the
absence of the .LEFTMARGIN directive, the assembler leaves no empty spaces
for the left margin.

The assembler compares the .LEFTMARGIN and .PAGEWIDTH values against
one another. If the specified values do not allow enough room for a
properly formatted listing page, the assembler issues a warning and adjusts
the directive that was specified last to allow an acceptable line width.

Syntax:

.LEFTMARGIN expression;

where:

expression – evaluates to an integer from 0 to 100. Default is 0. There-
fore, the minimum left margin value is 0 and the maximum left margin
value is 100. To change the default setting for the entire listing, place the
.LEFTMARGIN directive at the beginning of your assembly source file.

Example:

.LEFTMARGIN 9; /* the listing line begins at column 10 */

You can set the margin width only once per source file. If the
assembler encounters multiple occurrences of the .LEFTMARGIN
directive, it ignores all of them except the last directive.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-95

Assembler

.LIST/.NOLIST, Listing Source Lines and Opcodes

The .LIST/.NOLIST directives (on by default) turn on and off the listing of
source lines and opcodes.

If .NOLIST is in effect, no lines in the current source (or any nested source)
are listed until a .LIST directive is encountered in the same source, at the
same nesting level. The .NOLIST directive operates on the next source line,
so that the line containing a .NOLIST appears in the listing and accounts
for the missing lines.

The .LIST/.NOLIST directives do not take any qualifiers or arguments.

Syntax:

.LIST;

.NOLIST;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.

Assembler Syntax Reference

1-96 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes

The .LIST_DATA/.NOLIST_DATA directives (off by default) turn the listing
of data opcodes on and off. When .NOLIST_DATA is in effect, opcodes that
correspond to variable declarations do not apear in the opcode column.
Nested source files inherit the current setting of this directive pair, but a
change to the setting made in a nested source file do not affect the parent
source file.

The .LIST_DATA/.NOLIST_DATA directives do not take any qualifiers or
arguments.

Syntax:

.LIST_DATA;

.NOLIST_DATA;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-97

Assembler

.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files

The .LIST_DATFILE/.NOLIST_DATFILE directives (off by default) turn the
listing of data initialization files on and off. Nested source files inherit the
current setting of this directive pair, but a change to the setting made in a
nested source file will not affect the parent source file.

The .LIST_DATFILE/.NOLIST_DATFILE directives do not take any qualifiers
or arguments.

Syntax:

.LIST_DATFILE;

.NOLIST_DATFILE;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file. They are used in
assembly source files, but not in data initialization files.

Assembler Syntax Reference

1-98 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.LIST_DEFTAB, Set the Default Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control of two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_DEFTAB directive sets the default tab width, and the
.LIST_LOCTAB directive sets the local tab width (see on page 1-100).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives.
The default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

Syntax:

.LIST_DEFTAB expression;

where:

expression – evaluates to an integer greater than or equal to 0. In the
absence of a .LIST_DEFTAB directive, the default tab width defaults to 4.
A value of 0 sets the default tab width.

Example:

// Tabs here are expanded to the default of 4 columns

.LIST_DEFTAB 8;

// Tabs here are expanded to 8 columns

.LIST_LOCTAB 2;

// Tabs here are expanded to 2 columns

// But tabs in "include_1.h" will be expanded to 8 columns

#include "include_1.h"

.LIST_DEFTAB 4;

// Tabs here are still expanded to 2 columns

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-99

Assembler

// But tabs in "include_2.h" will be expanded to 4 columns

#include "include_2.h"

Assembler Syntax Reference

1-100 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.LIST_LOCTAB, Set the Local Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control of two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_LOCTAB directive sets the local tab width, and the .LIST_DEFTAB
directive sets the default tab width (see on page 1-98).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives.
The default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

Syntax:

.LIST_LOCTAB expression;

where:

expression – evaluates to an integer greater than or equal to 0. A value
of 0 sets the local tab width to the current setting of the default tab width.

In the absence of a .LIST_LOCTAB directive, the local tab width defaults to
the current setting for the default tab width.

Example: See the .LIST_DEFTAB example on page 1-98.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-101

Assembler

.LIST_WRAPDATA/.NOLIST_WRAPDATA

The .LIST_WRAPDATA/.NOLIST_WRAPDATA directives control the listing of
opcodes that are too big to fit in the opcode column. By default, the
.NOLIST_WRAPDATA directive is in effect.

This directive pair applies to any opcode that does not fit, but in practice,
such a value almost always is the data (alignment directives can also result
in large opcodes).

• If .LIST_WRAPDATA is in effect, the opcode value is wrapped so that
it fits in the opcode column (resulting in multiple listing lines).

• If .NOLIST_WRAPDATA is in effect, the printout is what fits in the
opcode column.

Nested source files inherit the current setting of this directive pair, but
a change to the setting made in a nested source file does not affect
the parent source file.

The .LIST_WRAPDATA/.NOLIST_WRAPDATA directives do not take any
qualifiers or arguments.

Syntax:

.LIST_WRAPDATA;

.NOLIST_WRAPDATA;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.

Assembler Syntax Reference

1-102 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.LONG, Defines and initializes 4-byte data objects

Used with Blackfin processors ONLY.

The .LONG directive declares and optionally initializes four-byte data
objects. It is effectively equivalent to .BYTE4 initExpression1,

initExpression2,…. For more information, see “.BYTE, Declare a Byte
Data Variable or Buffer” on page 1-79.

Syntax:

When declaring and/or initializing memory variables or buffer elements,
use the following format. Note that the terminating semicolon is optional.

.LONG initExpression1, initExpression2,…[;]

.LONG constExpression1, constExpression2,…[;]

where:

initExpressions parameters – contain one or more comma-separated
“symbol=value” expressions

constExpressions parameters – contain a comma-separated list of con-
stant values

The following lines of code demonstrate .LONG directives:

// Define an initialized variable

.LONG buf1=0x1234;

// Define two initialized variables

.LONG 0x1234, 0x5678, ...;

// Declare three 8 byte areas of memory, initialized to

3, 4 and 5 respectively

.LONG 0x0003, 0x0004, 0x0005;

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-103

Assembler

.MESSAGE, Alter the Severity of an Assembler Message

The .MESSAGE directive can be used to alter the severity of an error,
warning, or informational message generated by the assembler for all
or part of an assembly source.

Syntax:

.MESSAGE/qualifier warnid1 [,warnid2,…] ;

.MESSAGE/qualifier warnid1 [,warnid2,…] UNTIL sym;

.MESSAGE/qualifier warnid1 [,warnid2,…] FOR n LINES;

.MESSAGE/DEFAULT/qualifier warnid1 [,warnid2,…] ;

where:

warnid1[,warnid2,…] is a list of one or more message identification
numbers.

A qualifier can be:

• ERROR – change messages to errors

• WARN – change messages to warnings

• INFO – change messages to informational messages

• SUPPRESS – do not output the messages

• RESTORE_CL – change the severity of the messages back to the
default values they had at the beginning of the source file, after the
command line arguments were processed, but before any DEFAULT
directives have been processed.

Assembler Syntax Reference

1-104 VisualDSP++ 5.0 Assembler and Preprocessor Manual

• RESTORE – change the severity of the messages back to the default
values they had at the beginning of the source file, after the com-
mand line arguments were processed, and after any DEFAULT
directives have been processed.

• POP – change the severity of the messages back to what they were
prior to the previous .MESSAGE directive.

The RESTORE, RESTORE_CL, and POP qualifiers cannot be used with the
UNTIL, FOR, or DEFAULT forms of the .MESSAGE directive.

The DEFAULT qualifier cannot be used with the UNTIL or FOR forms of the
.MESSAGE directive.

The simple form of the .MESSAGE directive changes the severity of
messages until another .MESSAGE directive is seen. It can be placed
anywhere in a source file. Messages that could not be associated with a
source line can be reported with line number 0. These cannot be altered in
severity by a .MESSAGE directive. This should be done by using the
-Werror, -Wwarn, -Winfo, or -Wsuppress assembler switches. (See “Assem-
bler Command-Line Switch Descriptions” on page 1-144.)

Example:

.MESSAGE/ERROR 1049;

.SECTION program;

.VAR two[2]=1; // generates an error

.MESSAGE/SUPPRESS 1049;

.VAR three[3]=1,2; // generates no message

.MESSAGE/WARN 1049;

.VAR four[4]=1,2,3; // generates a warning

The temporary forms of the .MESSAGE directive (UNTIL and FOR) changes
the severity of messages until the specified label (or for the specified
number of source lines). The temporary forms of the .MESSAGE directive
must start and end within a single .SECTION directive.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-105

Assembler

Example (for TigerSHARC Processors):

.SECTION program;

.VAR one=1.0r; // generates a warning

.MESSAGE/ERROR 1177 UNTIL sym;

.VAR two=1.0r; // generates an error

sym:

.VAR three=1.0r; // generates a warning

.MESSAGE/ERROR 1177 FOR 3 LINES;

.VAR apple;

.VAR four=1.0r; // generates an error

.VAR orange;

.VAR five=1.0r; // generates a warning

The POP qualifier changes the severity of the messages back to previous
severities.

Example (for TigerSHARC Processors):

.MESSAGE/INFO 3012;

.SECTION program;

RETI;; // generates an informational

.MESSAGE/ERROR 3012;

RETI;; // generates an error

.MESSAGE/INFO 3012;

RETI;; // generates an informational

.MESSAGE/POP 3012;

RETI;; // generates an error - 2nd directive

.MESSAGE/POP 3012;

RETI;; // generates an informational - 1st directive

.MESSAGE/POP 3012;

RETI;; // generates a warning - the default for this message

The DEFAULT qualifier is used to redefine the default severity for messages.
It can be placed anywhere in a source file. It only takes affect when the
message severity has not been changed by a .MESSAGE directive.

Assembler Syntax Reference

1-106 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Example (for TigerSHARC Processors):

.MESSAGE/DEFAULT/ERROR 1177;

.MESSAGE/DEFAULT/INFO 1177;

.SECTION program;

.VAR one=1.0r; // generates an informational

.MESSAGE/ERROR 1177;

.VAR two=1.0r; // generates an error

.MESSAGE/RESTORE 1177;

.VAR three=1.0r; // generates an informational

.MESSAGE/RESTORE_CL 1177;

.VAR four=1.0r; // generates a warning

The -Werror, -Wwarn, -Winfo, or -Wsuppress assembler switches
have the same affect as the DEFAULT form of .MESSAGE. (See “Assem-
bler Command-Line Switch Descriptions” on page 1-144.)

Many error messages cannot be altered in severity as the assembler
behavior is unknown.

Include files inherit any severity changes from the files which #include
them. .MESSAGE directives in include files do not control the severity of
messages generated after returning to the source file which included them.

A .MESSAGE/DEFAULT directive in an include file controls the severity of
messages generated after returning to the source file which included them.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-107

Assembler

.NEWPAGE, Insert a Page Break in a Listing File

The .NEWPAGE directive inserts a page break in the printed listing file
(.lst), which the assembler produces when you use the -l switch
(on page 1-158). The assembler inserts a page break at the location of the
.NEWPAGE directive.

The .NEWPAGE directive does not take any qualifiers or arguments.

Syntax:

.NEWPAGE;

This directive may appear anywhere in your source file. In the absence of
the .NEWPAGE directive, the assembler generates no page breaks in the file.

Assembler Syntax Reference

1-108 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.PAGELENGTH, Set the Page Length of a Listing File

The .PAGELENGTH directive controls the page length of the listing file
produced by the assembler when you use the -l switch (on page 1-158)

Syntax:

.PAGELENGTH expression;

where:

expression – evaluates to an integer 0 or greater. It specifies the number
of text lines per printed page. The default page length is 0, which means
the listing has no page breaks.

To format the entire listing, place the .PAGELENGTH directive at the
beginning of your assembly source file. If a page length value greater than
0 is too small to allow a properly formatted listing page, the assembler
issues a warning and uses its internal minimum page length (approxi-
mately 10 lines).

Example:

.PAGELENGTH 50; // starts a new page after printing 50 lines

You can set the page length only once per source file. If the
assembler encounters multiple occurrences of the directive,
it ignores all except the last directive.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-109

Assembler

.PAGEWIDTH, Set the Page Width of a Listing File

The .PAGEWIDTH directive sets the page width of the listing file produced
by the assembler when you use the -l switch.

Syntax:

.PAGEWIDTH expression;

where:

expression – evaluates to an integer

Depending on setting of the .LEFTMARGIN directive, this integer should be
at least equal to:

• LEFTMARGIN value plus 46 (for Blackfin processors)

• LEFTMARGIN value plus 49 (for TigerSHARC processors)

• LEFTMARGIN value plus about 66 (for SHARC processors)

You cannot set this integer to less than 46, 49, or 66, respectively. There is
no upper limit. If LEFTMARGIN = 0 and the .PAGEWIDTH value is not
specified, the actual page width is set to any number over 46, 49, or 66,
respectively.

To change the number of characters per line in the entire listing, place the
.PAGEWIDTH directive at the beginning of the assembly source file.

Assembler Syntax Reference

1-110 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Example:

.PAGEWIDTH 72; // starts a new line after 72 characters
// are printed on one line, assuming

// the .LEFTMARGIN setting is 0.

You can set the page width only once per source file. If the
assembler encounters multiple occurrences of the directive,
it ignores all of them except the last directive.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-111

Assembler

.PORT, Legacy Directive

Used with SHARC processors ONLY.

The .PORT legacy directive assigns port name symbols to I/O ports.
Port name symbols are global symbols that correspond to memory-
mapped I/O ports defined in the .ldf file.

The .PORT directive uses the following syntax:

.PORT portName;

where:

portName – a globally available port symbol

Example:

.PORT p1; // declares I/O port P1

.PORT p2; // declares I/O port P2

To declare a port using the SHARC assembler syntax, use the .VAR
directive (for port-identifying symbols) and the linker description file
(for corresponding I/O sections). The linker resolves port symbols in the
.ldf file.

For more information on the linker description file, see the VisualDSP++
5.0 Linker and Utilities Manual.

Assembler Syntax Reference

1-112 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.PRECISION, Select Floating-Point Precision

Used with SHARC processors ONLY.

The .PRECISION directive controls how the assembler interprets
floating-point numeric values in constant declarations and variable
initializations. To configure the floating-point precision of the target
processor system, you must set up control registers of the chip using
instructions specific to the processor core.

Use one of the following options:

.PRECISION [=] 32;

.PRECISION [=] 40;

where:

The precision of 32 or 40 (default) specifies the number of significant bits
for floating-point data. The equal sign (=) following the .PRECISION
keyword is optional.

Note that the .PRECISION directive applies only to floating-point data.
Precision of fixed-point data is determined by the number of digits
specified. The .PRECISION directive applies to all floating-point
expressions in the file that follow it up to the next .PRECISION directive.

Example:

.PRECISION=32; /* Selects standard IEEE 32-bit

single-precision format; */

.PRECISION 40; /* Selects standard IEEE 40-bit format

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-113

Assembler

with extended mantissa. This is the default

setting. */

The .ROUND_ directives (on page 1-119) specify how the assembler
converts a value of many significant bits to fit into the selected
precision.

Assembler Syntax Reference

1-114 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.PREVIOUS, Revert to the Previously Defined Section

The .PREVIOUS directive instructs the assembler to set the current section
in memory to the section described immediately before the current one.
The .PREVIOUS directive operates on a stack.

Syntax:

.PREVIOUS;

The following examples provide valid and invalid cases of the use of the
consecutive .PREVIOUS directives.

Example of Invalid Directive Use

.SECTION data1; // data

.SECTION code; // instructions

.PREVIOUS; // previous section ends, back to data1

.PREVIOUS; // no previous section to set to

Example of Valid Directive Use

#define MACRO1 \

.SECTION data2; \

.VAR vd = 4; \

.PREVIOUS;

.SECTION data1; // data

.VAR va = 1;

.SECTION program; // instructions

.VAR vb = 2;

 MACRO1 // invoke macro

.PREVIOUS;
.VAR vc = 3;

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-115

Assembler

evaluates as:

.SECTION data1; // data

.VAR va = 1;

.SECTION program; // instructions

.VAR vb = 2;

// Start MACRO1

.SECTION data2;

.VAR vd = 4;

.PREVIOUS; // end data2, section program

// End MACRO1

.PREVIOUS; // end program, start data1

.VAR vc = 3;

.PRIORITY, Allow Prioritized Symbol Mapping in Linker

The .PRIORITY directive allows prioritized symbol mapping in the linker.
The directive can be specified in three ways:

• For a symbol defined in the same file as the directive

• For a globally defined symbol

• For a local symbol in a different source file

Syntax:

.PRIORITY symbolName, priority;

.PRIORITY symbolName,"sourcefile", priority;

where:

In the first case, symbolName is a global symbol or locally defined symbol.
In the second case, symbolName is a symbol defined in ‘sourcefile’.

Assembler Syntax Reference

1-116 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Example:

.PRIORITY _foo, 35; // Symbol with highest priority

.PRIORITY _main, 15; // Symbol with medium priority

.PRIORITY bar, "barFile.asm", -10; // Symbol with lowest

// priority

Linker Operation

After the absolute placement of symbols specified in the .ldf file’s
RESOLVE() command (but before mapping commands are processed),
the linker tries to map all symbols appearing in priority directives
(in decreasing order of their priorities).

The prioritized symbol is placed into memory that contains only the
INPUT_SECTIONS() command for input sections defining the symbol.
Symbols with assigned priority are mapped after absolutely placed
symbols, but before symbols without assigned priority.

The symbols are placed into memory segments based on the order that the
segments are appear in the .ldf file. Therefore, an output section target-
ing a higher-priority memory segment should appear before an output
section targeting a lower-priority segment.

Example of Assembler Code:

section program;

_func1:

_func2:

section L1_code;

_L1_func:

...

.PRIORITY _L1 func,10;

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-117

Assembler

.PRIORITY _func1,11;

.PRIORITY _func2,12;

Example of LDF Code:

L1_A { INPUT_SECTIONS($OBJECTS(L1_code)) } > L1_A;//

L1_A { INPUT_SECTIONS($OBJECTS(L1_code program)) } > L1_B;

L2 { INPUT_SECTIONS($OBJECTS(program)) } > L2;

The preceding two examples result in the linker executing the following
three steps:

1. Because _func2 is assigned the highest priority (12) in the assem-
bler code, the linker first tries to map it into the L1_B memory
segment. If _func2 does not fit into L1_B , it tries the L2 segment.

2. Because _func1 is assigned the middle priority (11) in the assem-
bler code, the linker first tries to map it into the L1_B memory
segment. If _func2 does not fit into L1_B , it tries the L2 segment.

3. Because _L1_func is assigned the lowest priority (10) in the assem-
bler code, the linker first tries to map it into the L1_A memory
segment. If _L1_func does not fit into L1_A , it tries the L1_B
segment.

Assembler Syntax Reference

1-118 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.REFERENCE, Provide Better Info in an X-REF File

Used with Blackfin processors ONLY.

The .REFERENCE directive is used by the compiler to provide better
information in an X-REF file generated by the linker. This directive is
used when there are indirect symbol references that would otherwise not
appear in an X-REF file.

The .REFERENCE directive uses the following syntax:

.REFERENCE symbol;

where:

symbol – is a symbol

Example:

.REFERENCE P1; //

.REFERENCE P2; //

.RETAIN_NAME, Stop Linker from Eliminating Symbol

The .RETAIN_NAME directive stops the linker from eliminating the symbol
when linking the generated object file. This directive has the same effect as
the KEEP() LDF command has when used with the linker.

Syntax:

The .RETAIN_NAME directive uses the following syntax:

.RETAIN_NAME symbol;

where:

symbol – is a user-defined symbol

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-119

Assembler

For information on KEEP(), refer to the VisualDSP++ 5.0 Linker and
Utilities Manual.

.ROUND_, Select Floating-Point Rounding

Used with SHARC processors ONLY.

The .ROUND_ directives control how the assembler interprets literal
floating-point numeric data after .PRECISION is defined. The .PRECISION
directive determines the number of bits to be truncated to match the
number of significant bits (see on page 1-112).

The .ROUND_ directives determine how the assembler handles the
floating-point values in constant declarations and variable initializations.
To configure the floating-point rounding modes of the target processor
system, you must set up control registers on the chip using instructions
specific to the processor core.

The .ROUND_ directives use the following syntax:

.ROUND_mode;

where:

The mode string specifies the rounding scheme used to fit a value in the
destination format. Use one of the following IEEE standard modes:

.ROUND_NEAREST; (default)

.ROUND_PLUS; (rounds to round-to-positive infinity)

.ROUND_MINUS; (rounds to round-to-negative infinity)

.ROUND_ZERO; (selects round-to-zero)

Assembler Syntax Reference

1-120 VisualDSP++ 5.0 Assembler and Preprocessor Manual

In the following examples, the numbers with four decimal places are
reduced to three decimal places and are rounded accordingly.

.ROUND_NEAREST;

/* Selects Round-to-Nearest scheme; this is the default

setting.

A 5 is added to the digit that follows the third

decimal digit (the least significant bit - LSB). The

result is truncated after the third decimal digit (LSB).

1.2581 rounds to 1.258

8.5996 rounds to 8.600

-5.3298 rounds to -5.329

-6.4974 rounds to -6.496

*/

.ROUND_ZERO;

/* Selects Round-to-Zero. The closer to zero value is taken.
The number is truncated after the third decimal digit (LSB)

1.2581 rounds to 1.258

8.5996 rounds to 8.599

-5.3298 rounds to -5.329

-6.4974 rounds to -6.497

*/

.ROUND_PLUS;

/* Selects Round-to-Positive Infinity. The number rounds

to the next larger.

For positive numbers, a 1 is added to the third decimal

digit (the least significant bit). Then the result is

truncated after the LSB.

For negative numbers, the mantissa is truncated after

the third decimal digit (LSB).

1.2581 rounds to 1.259

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-121

Assembler

8.5996 rounds to 8.600

-5.3298 rounds to -5.329

-6.4974 rounds to -6.497

*/

.ROUND_MINUS;

/* Selects Round-to-Negative Infinity. The value

rounds to the next smaller.

For negative numbers, a 1 is subtracted from the

third decimal digit (the least significant bit).

Then the result is truncated after the LSB.

For positive numbers, the mantissa is truncated

after the third decimal digit (LSB).

1.2581 rounds to 1.258

8.5996 rounds to 8.599

-5.3298 rounds to -5.330

-6.4974 rounds to -6.498

*/

Assembler Syntax Reference

1-122 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.SECTION, Declare a Memory Section

The .SECTION directive marks the beginning of a logical section mirroring
an array of contiguous locations in your processor memory. Statements
between one .SECTION directive and the following .SECTION directive
(or the end-of-file instruction), comprise the content of the section.

TigerSHARC and Blackfin Syntax:

.SECTION/qualifier [/qualifier] sectionName [sectionType];

SHARC Syntax:

.SECTION[/TYPE/qualifier sectionName [sectionType];

All qualifiers are optional, and more than one qualifier can be used.

Common .SECTION Attributes

The following are common syntax attributes used by the assembler:

• sectionName – section name symbol which is not limited in length
and is case sensitive. Section names must match the corresponding
input section names used by the .ldf file to place the section.
Use the default .ldf file included in the <install_path>/ldf
subdirectory of the VisualDSP++ installation directory, or write
your own .ldf file.

Some sections starting with “.” names have certain meaning within
the linker. Do not use the dot (.) as the initial character in
sectionName.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-123

Assembler

The assembler generates relocatable sections for the linker to fill in
the addresses of symbols at link-time. The assembler implicitly
prefixes the name of the section with the “.rela.” string to form a
relocatable section. To avoid ambiguity, ensure that your section
names do not begin with “.rela.”.

• sectionType – an optional ELF section type identifier. The
assembler uses the default SHT_PROGBITS when this identifier
is absent. For example, .SECTION program SHT_DEBUGINFO;

Supported ELF section types are SHT_PROGBITS, SHT_DEBUGINFO,
and SHT_NULL. These sectionTypes are described in the ELF.h
header file, which is available from third-party software develop-
ment kits. For more information on the ELF file format, see the
VisualDSP++ 5.0 Linker and Utilities Manual.

If you select an invalid common qualifier or specify no common
qualifier, the assembler exits with an error message.

Blackfin Example:

/* Declared below memory sections correspond to the

default LDF’s input sections. */

.SECTION/DOUBLE32 data1; // memory section to store data

.SECTION/DOUBLE32 program; // memory section to store code

DOUBLE* Qualifiers

The DOUBLE* qualifier can be one of:

Table 1-18. DOUBLE Qualifiers

Qualifer Description

DOUBLE32 DOUBLEs are represented as 32-bit types

DOUBLE64 DOUBLEs are represented as 64-bit types

DOUBLEANY Section does not include code that depends on the size of DOUBLE

Assembler Syntax Reference

1-124 VisualDSP++ 5.0 Assembler and Preprocessor Manual

The DOUBLE size qualifiers are used to ensure that object files are consistent
when linked together and with run-time libraries. A memory section may
have one DOUBLE size qualifier – it cannot have two DOUBLE size qualifiers.
Sections in the same file do not have to have the same type size qualifiers.

Use of DOUBLEANY in a section implies that DOUBLE’s are not used in
this section in any way that would require consistency checking
with any other section.

TigerSHARC-Specific Qualifiers

In addition, the TigerSHARC-specific qualifier1, qualifier2... can be
one of the following, listed in Table 1-19:

The char size qualifiers are used to ensure that object files are consistent
when linked together and with run-time libraries. A section may have a
double size qualifier and a char size qualifier. It cannot have two char size
qualifiers. Sections in the same file do not have to have the same type size
qualifiers.

Use of CHARANY in a section implies that char and shorts are not
used in this section in any way that would require consistency
checking with any other section.

Table 1-19. TigerSHARC-Specific Qualifiers

CHAR8 CHAR32 CHARANY

CHARs are represented as 8-bit
types. Shorts are repre-
sented as 16-bit types.

CHARs are represented as
32-bit types. Shorts are rep-
resented as 32-bit types.

Section does not include code
that depends on the size of
CHAR.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-125

Assembler

SHARC-Specific Qualifiers

For the SHARC assembler, the .SECTION directive supports qualifiers that
specify the size of data words in the section (and a qualifier that may be
used to specify restricted placement for the section). Each section that
defines data or code must bear an appropriate size qualifier; the placement
qualifier is optional. Table 1-20 lists the SHARC-specific qualifiers.

The DMAONLY qualifier enforces that access to the section contents occurs
through DMA alone; this qualifier passes to the linker the request that this
section is to be placed in a memory segment that has the DMAONLY qualifier,
which applies to memory accessed through the external parallel port of
ADSP-2126x processors and some ADSP-2136x processors.

For example:

.SECTION/DM/DMAONLY seg_extm;

.VAR _external_var[100];

Initialization Section Qualifiers

The .SECTION directive may identify “how/when/if” a section is initialized.
The initialization qualifiers, common for all supported assemblers, are
listed in Table 1-21.

Table 1-20. SHARC-Specific Qualifiers

Memory/Section
Type

Description

PM or Code Section contains instructions and/or data, in 48-bit words

DM or Data Section contains data in 40-bit words

DATA64 Section defines data in 64-bit words

DMAONLY Section is to be placed in memory that can be accessed through DMA only

Assembler Syntax Reference

1-126 VisualDSP++ 5.0 Assembler and Preprocessor Manual

For example,

.SECTION/NO_INIT seg_bss;

.VAR big[0x100000];

.SECTION/ZERO_INIT seg_bsz;

.VAR big[0x100000];

Initialized data in a /NO_INIT or /ZERO_INIT section is ignored.
For example, the assembler can generate a warning for the .VAR zz
initialization.

.SECTION/NO_INIT seg_bss;

.VAR xx[1000];

.VAR zz = 25; // [Warning ea1141] "example.asm":3 'zz':

Data directive with assembly-time initializers found

in .SECTION 'seg_bss' with qualifier /NO_INIT.

Table 1-21. SHARC-Specific Qualifiers

Qualifier Description

NO_INIT The section is “sized” to have enough space to contain all data elements
placed in this section. No data initialization is used for this memory section.

ZERO_INIT Similar to /NO_INIT, except that the memory space for this section is initial-
ized to zero at “load time” or “runtime”, if invoked with the linker’s -memi-
nit switch. If the -meminit switch is not used, the memory is initialized at
“load” time when the .DXE file is loaded via VisualDSP++ IDDE, or
boot-loaded by the boot kernel. If the memory initializer is invoked, the
C/C++ run-time library (CRTL) processes embedded information to initial-
ize the memory space during the CRTL initialization process.

RUNTIME_INIT If the memory initializer is not run, this qualifier has no effect. If the mem-
ory initializer is invoked, the data for this section is set during the CRTL ini-
tialization process.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-127

Assembler

Likewise, the assembler generates a warning for an explicit initialization
to 0 in a ZERO_INIT section.

.SECTION/ZERO_INIT seg_bsz;

.VAR xx[1000];

.VAR zz = 0;

The assembler calculates the size of NO_INIT and ZERO_INIT sections
exactly as for the standard SHT_PROGBITS sections. These sections, like
the sections with initialized data, have the SHF_ALLOC flag set. Alignment
sections are produced for NO_INIT and ZERO_INIT sections.

For more information, refer to the VisualDSP++ 5.0 Linker and Utilities
Manual.

Table 1-22. Section Qualifiers, Section-Header-Types, and
Section-Header-Flags

.SECTION Qualifier ELF SHT_* (Elf.h)
Section-Header-Type

ELF SHF_* (Elf.h)
Section-Header-Flag

.SECTION/NO_INIT SHT_NOBITS SHF_ALLOC

.SECTION/ZERO_INIT SHT_NOBITS SHF_ALLOC, SHF_INIT

.SECTION/RUNTIME_INIT SHT_PROGBITS SHF_ALLOC, SHF_INIT

Assembler Syntax Reference

1-128 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.SEGMENT and .ENDSEG, Legacy Directives

Used with SHARC processors ONLY.

Releases of the ADSP-210xx DSP development software prior to
VisualDSP++ 4.1 used the .SEGMENT and .ENDSEG directives to define the
beginning and end of a section of contiguous memory addresses.

Although these directives have been replaced with the .SECTION directive,
source code written with .SEGMENT/.ENDSEG legacy directives is accepted
by the ADSP-21xxx assembler.

.SEPARATE_MEM_SEGMENTS

Used with TigerSHARC processors ONLY.

The .SEPARATE_MEM_SEGMENTS directive allows you to specify two buffers
the linker should try to place into different memory segments.

Syntax:

.SECTION data1;

.VAR buf1;

.VAR buf2;

.EXTERN buf3;

.SEPARATE_MEM_SEGMENTS buf1, buf2

.SEPARATE_MEM_SEGMENTS buf1, buf3

You can also use the compiler’s separate_mem_segments pragma to
perform the same function. For more information, refer to your
processor’s VisualDSP++ C/C++ Compiler and Library Manual.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-129

Assembler

.SET, Set a Symbolic Alias

The .SET directive is used to alias one symbol for another.

Syntax:

.SET symbol1, symbol2

where:

symbol1 becomes an alias to symbol2.

Example

.SET symbol1, symbol1

.SHORT, Defines and initializes 2-byte data objects

Used with Blackfin processors ONLY.

The .SHORT directive declares and optionally initializes two-byte data
objects. It is effectively equivalent to .BYTE2 initExpression1,

initExpression2,…. For more information, see “.BYTE, Declare a Byte
Data Variable or Buffer” on page 1-79.

Syntax:

When declaring and/or initializing memory variables or buffer elements,
use this format. Note that the terminating semicolon is optional.

.SHORT initExpression1, initExpression2,…[;]

.SHORT constExpression1, constExpression2,…[;]

where:

initExpressions parameters – contain one or more comma-separated
“symbol=value” expressions

Assembler Syntax Reference

1-130 VisualDSP++ 5.0 Assembler and Preprocessor Manual

constExpressions parameters – contain a comma-separated list of
constant values

The following lines of code demonstrate .SHORT directives:

// Declare three 2-byte variables, zero-initialized

.SHORT Ins, Outs, Remains;

// Declare a 2-byte variable and initialize it to 100

.SHORT taps=100;

// Declare three 2-byte areas of memory, initialized to

3, 4 and 5 respectively

.SHORT 0x3, 0x4, 0x5;

.STRUCT, Create a Struct Variable

The .STRUCT directive allows you to define and initialize high-level data
objects within the assembly code. The .STRUCT directive creates a struct
variable using a C-style typedef as its guide from .IMPORT C header files.

Syntax:

.STRUCT typedef structName;

.STRUCT typedef structName = {};

.STRUCT typedef structName = { struct-member-initializers
[,struct-member-initializers...] };

.STRUCT typedef ArrayOfStructs [] =
{ struct-member-initializers
[,struct-member-initializers...] };

where:

typedef – the type definition for a struct VARstructName – a struct name

struct-member-initializers – per struct member initializers

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-131

Assembler

The { } curly braces are used for consistency with the C initializer syntax.
Initialization can be in “long” form or “short” form where data member
names are not included. The short form corresponds to the syntax in C
compiler struct initialization with these changes:

• Change C compiler keyword struct to .struct (adds the period (.)

• Change C compiler constant string syntax “MyString”
to 'MyString' (changes the double quotes (" ") into single quotes
(‘ ‘))

The long form is assembler-specific and provides the following benefits:

• Provides better error checking

• Supports self-documenting code

• Protects from possible future changes to the layout of the struct.
If an additional member is added before the member is initialized,
the assembler will continue to offset to the correct location for the
specified initialization and zero-initialize the new member.

Any members that are not present in a long-form initialization are
initialized to zero. For example, if struct StructThree has three members
(member1, member2, and member3), and

.STRUCT StructThree myThree {

member1 = 0xaa,

member3 = 0xff

};

member2 will be initialized to 0 because no initializer was present for it.
If no initializers are present, the entire struct is zero-initialized.

If data member names are present, the assembler validates that the
assembler and compiler are in agreement about these names. The initial-
ization of data struct members declared via the assembly .STRUCT directive
is processor-specific.

Assembler Syntax Reference

1-132 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Example 1. Long Form .STRUCT Directive

#define NTSC 1

// contains layouts for playback and capture_hdr

.IMPORT "comdat.h";

.STRUCT capture_hdr myLastCapture = {

captureInt = 0,

captureString = ‘InitialState’

};

.STRUCT myPlayback playback = {

theSize = 0,

ready = 1,

stat_debug = 0,

last_capture = myLastCapture,

watchdog = 0,

vidtype = NTSC

};

Example 2. Short Form .STRUCT Directive

#define NTSC 1

// contains layouts for playback and capture_hdr

.IMPORT "comdat.h";

.STRUCT capture_hdr myLastCapture = { 0, ‘InitialState’ };

.STRUCT playback myPlayback = { 0, 1, 0, myLastCapture, 0, NTSC};

Example 3. Long Form .STRUCT Directive to Initialize an Array

.STRUCT structWithArrays XXX = {

scalar = 5,

array1 = { 1,2,3,4,5 },

array2 = { "file1.dat" },

array3 = "WithBraces.dat" // must have { } within dat

};

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-133

Assembler

In the short form, nested braces can be used to perform partial initializa-
tions as in C. In Example 4 below, if the second member of the struct is an
array with more than four elements, the remaining elements is initialized
to zero.

Example 4. Short Form .STRUCT Directive to Initialize an Array

.STRUCT structWithArrays XXX = { 5, { 1,2,3,4 }, 1, 2 };

Example 5. Initializing a Pointer

A struct may contain a pointer. Initialize pointers with symbolic
references.

.EXTERN outThere;

.VAR myString[] = 'abcde',0;

.STRUCT structWithPointer PPP = {

scalar = 5,

myPtr1 = myString,

myPtr2 = outThere

};

Example 6. Initializing a Nested Structure

A struct may contain a struct. Use fully qualified references to initialize
nested struct members. The struct name is implied.

For example, the reference “scalar” (“nestedOne->scalar” implied) and
“nested->scalar1” (“nestedOne->nested->scalar1” implied).

.STRUCT NestedStruct nestedOne = {

scalar = 10,

nested->scalar1 = 5,

nested->array = { 0x1000, 0x1010, 0x1020 }

};

Assembler Syntax Reference

1-134 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.TYPE, Change Default Symbol Type

The .TYPE directive directs the assembler to change the default symbol
type of an object. This directive may appear in the compiler-generated
assembly source file (.s).

Syntax:

.TYPE symbolName, symbolType;

where:

symbolName – the name of the object to which the symbolType is applied

symbolType – an ELF symbol type STT_*. Valid ELF symbol types are
listed in the ELF.h header file. By default, a label has an STT_FUNC symbol
type, and a variable or buffer name defined in a storage directive has an
STT_OBJECT symbol type.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-135

Assembler

.VAR, Declare a Data Variable or Buffer

The .VAR directive declares and optionally initializes variables and data
buffers. A variable uses a single memory location, and a data buffer uses an
array of memory locations.

When declaring or initializing variables:

• A .VAR directive may appear only within a section. The assembler
associates the variable with the memory type of the section in
which the .VAR appears.

• A single .VAR directive can declare any number of variables
or buffers, separated by commas, on one line.

Unless the absolute placement for a variable is specified with a
RESOLVE() command (from an .ldf file), the linker places variables
in consecutive memory locations. For example, .VAR d,f,k[50];
sequentially places symbols x, y, and 50 elements of the buffer z in
the processor memory. Therefore, code example may look like:
.VAR d;

.VAR f;

.VAR k[50];

• The number of initializer values may not exceed the number of
variables or buffer locations that you declare.

• The .VAR directive may declare an implicit-size buffer by using
empty brackets []. The number of initialization elements defines
the length of the implicit-size buffer. At runtime, the length oper-
ator can be used to determine the buffer size. For example,
.SECTION data1;

Assembler Syntax Reference

1-136 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.VAR buffer [] = 1,2,3,4;

.SECTION program;

LO = LENGTH(buffer); // Returns 4

Syntax:

The .VAR directive takes one of the following forms:

.VAR varName1[,varName2,…];

.VAR = initExpression1, initExpression2,…;

.VAR bufferName[] = {initExpression1, initExpression2,...};

.VAR bufferName[] = {"fileName"};

.VAR bufferName[length] = "fileName";

.VAR bufferName[length] = initExpression1,initExpression2,…;

where:

varName – user-defined symbols that identify variables

bufferName – user-defined symbols that identify buffers

fileName parameter – indicates that the elements of a buffer get their
initial values from the fileName data file. The <fileName> can consist of
the actual name and path specification for the data file. If the initialization
file is in the current directory of your operating system, only the fileName
need be given quotes. Note that when reading in a data file, the assembler
reads in whitespace-separated lists of decimal digits or hex strings.

Initialization from files is useful for loading buffers with data, such as
filter coefficients or FFT phase rotation factors that are generated by other
programs. The assembler determines how the values are stored in memory
when it reads the data files.

Ellipsis (…) – a comma-delimited list of parameters

[length] – optional parameter that defines the length (in words) of the
associated buffer. When length is not provided, the buffer size is deter-
mined by the number of initializers.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-137

Assembler

Brackets ([]) – enclosing the optional [length] is required. For more
information, see the following .VAR examples.

initExpressions parameters – set initial values for variables and buffer
elements.

With Blackfin processors, the assembler uses a /R32 qualifier
(.VAR/R32) to support 32-bit initialization for use with 1.31 fracts
(see on page 1-59).

The following code demonstrate some .VAR directives:

.VAR buf1=0x1234;

// Define one initialized variable

.VAR=0x1234, 0x5678;

// Define two initialized words

.VAR samples[] = {10, 11, 12, 13, 14};

// Declare and initialize an implicit-length buffer

// since there are five values; this has the same effect

// as samples[5].
// Initialization values for implicit-size buffer

// must be in curly brackets.

.VAR Ins, Outs, Remains;

// Declare three uninitialized variables

.VAR samples[100] = "inits.dat";

// Declare a 100-location buffer and initialize it

// with the contents of the inits.dat file;

.VAR taps=100;

// Declare a variable and initialize the variable

// to 100

.VAR twiddles[10] = "phase.dat";

// Declare a 10-location buffer and load the buffer

Assembler Syntax Reference

1-138 VisualDSP++ 5.0 Assembler and Preprocessor Manual

// with the contents of the phase.dat file

.VAR Fract_Var_R32[] = "fr32FormatFract.dat";

All Blackfin processor memory accesses require proper alignment.
Therefore, when loading or storing an N-byte value into the
processor, ensure that this value is aligned in memory by N
boundary; otherwise, a hardware exception is generated.

Blackfin Code Example:

In the following example, the 4-byte variables y0, y1, and y2 would be
misaligned unless the .ALIGN 4; directive is placed before the .VAR y0;
and .VAR y2; statements.

.SECTION data1;

.ALIGN 4;

.VAR X0;

.VAR X1;

.BYTE B0;

.ALIGN 4; // aligns the following data item "Y0" on a word

// boundary; advances other data items

// consequently

.VAR Y0;

.VAR Y1;

.BYTE B1;

.ALIGN 4; // aligns the following data item "Y2" on a word

// boundary

.VAR Y2;

.VAR and ASCII String Initialization Support

The assemblers support ASCII string initialization. This allows the full use
of the ASCII character set, including digits and special characters.

On SHARC and TigerSHARC processors, the characters are stored in the
upper byte of 32-bit words. The least significant bits (LSBs) are cleared.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-139

Assembler

When using 16-bit Blackfin processors, refer to the .BYTE directive
description on page 1-79 for more information.

String initialization takes one of the following forms:

.VAR symbolString[length] = ‘initString’, 0;

.VAR symbolString[] = ‘initString’, 0;

Note that the number of initialization characters defines length of a string.

For example,

.VAR x[13] = ‘Hello world!’, 0;

.VAR x[] = {‘Hello world!’, 0};

The trailing zero character is optional. It simulates ANSI-C string
representation.

The assemblers also accept ASCII characters within comments.
Note special characters handling:

.VAR s1[] = {'1st line',13,10,'2nd line',13,10,0};

// carriage return

.VAR s2[] = {'say:"hello"',13,10,0}; // quotation marks

.VAR s3[] = {'say:',39,'hello',39,13,10,0};

// simple quotation marks

Assembler Syntax Reference

1-140 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.WEAK, Support Weak Symbol Definition and Reference

The .WEAK directive supports weak binding for a symbol. Use this directive
where the symbol is defined (replacing the .GLOBAL directive to make a
weak definition) and the .EXTERN directive (to make a weak reference).

Syntax:

.WEAK symbol;

where:

symbol – the user-defined symbol

Although the linker generates an error if two objects define global symbols
with identical names, it allows any number of instances of weak defini-
tions of a name. All will resolve to the first, or to a single, global definition
of a symbol.

One difference between .EXTERN and .WEAK references is that the linker
does not extract objects from archives to satisfy weak references. Such
references, left unresolved, have the value 0.

The .WEAK (or .GLOBAL scope) directive is required to make symbols
available for placement through RESOLVE commands in the .ldf
file.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-141

Assembler

Assembler Command-Line Reference
This section describes the assembler command-line interface and switch
set. It describes the assembler’s switches, which are accessible from the
operating system’s command line or from the VisualDSP++ environment.

This section contains:

• “Running the Assembler” on page 1-142

• “Assembler Command-Line Switch Descriptions” on page 1-144

Command-line switches control certain aspects of the assembly process,
including debugging information, listing, and preprocessing. Because the
assembler automatically runs the preprocessor as your program assembles
(unless you use the -sp switch), the assembler’s command line can receive
input for the preprocessor program and direct its operation. For more
information on the preprocessor, see Chapter 2 “Preprocessor”.

When developing a DSP project, you may find it useful to modify
the assembler’s default options settings. The way you set assembler
options depends on the environment used to run the DSP develop-
ment software.

See “Specifying Assembler Options in VisualDSP++” on
page 1-168 for more information.

Assembler Command-Line Reference

1-142 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Running the Assembler
To run the assembler from the command line, type the name of the
appropriate assembler program followed by arguments (in any order),
and the name of the assembly source file.

easm21K [-switch1 [-switch2 …]] sourceFile

easmts [-switch1 [-switch2 …]] sourceFile

easmblkfn [-switch1 [-switch2 …]] sourceFile

Table 1-23 explains these arguments.

The name of the source file to assemble can be provided as:

• ShortFileName – a file name without quotes (no special characters)

• LongFileName – a quoted file name (may include spaces and other
special path name characters)

The assembler outputs a list of command-line options when run without
arguments (same as -h[elp]).

Table 1-23. Assembler Command Line Arguments

Argument Description

easm21K
easmts
easmblkfn

Name of the assembler program for SHARC, TigerSHARC, and Blackfin pro-
cessors, respectively.

-switch Switch (or switches) to process. The command-line interface offers many
optional switches that select operations and modes for the assembler and pre-
processor. Some assembler switches take a file name as a required parameter.

sourceFile Name of the source file to assemble.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-143

Assembler

The assembler supports relative path names and absolute path names.
When you specify an input or output file name as a parameter, follow
these guidelines for naming files:

• Include the drive letter and path string if the file is not in the
current project directory.

• Enclose long file names in double quotation marks; for example,
“long file name”.

• Append the appropriate file name extension to each file.

Table 1-24 summarizes file extension conventions accepted by the
VisualDSP++ environment.

Assembler command-line switches are case sensitive. For example, the
following command line

easmblkfn -proc ADSP-BF535 -l pList.lst -Dmax=100 -v -o

bin\p1.doj p1.asm

Table 1-24. File Name Extension Conventions

Extension File Description

.asm Assembly source file
Note: The assembler treats files with unrecognized (or not existing)
extensions as assembly source files.

.is Preprocessed assembly source file

.h Header file

.lst Listing file

.doj Assembled object file in ELF/DWARF-2 format

.dat Data initialization file

Assembler Command-Line Reference

1-144 VisualDSP++ 5.0 Assembler and Preprocessor Manual

runs the assembler with:

-proc ADSP-BF535 – specifies assembles instructions unique to
ADSP-BF535 processors

-l pList.lst – directs the assembler to output the listing file

-Dmax=100 – defines the preprocessor macro max to be 100

-v – displays verbose information on each phase of the assembly

-o bin\p1.doj – specifies the name and directory for the assembled
object file

p1.asm – identifies the assembly source file to assemble

Assembler Command-Line Switch Descriptions
This section describes the assembler command-line switches in ASCII col-
lation order. A summary of the assembler switches appears in Table 1-25.
A detailed description of each assembler switch starts on page 1-148.

Table 1-25. Assembler Command-Line Switch Summary

Switch Name Purpose

-align-branch-lines
(on page 1-148)

Aligns branch lines to avoid ADSP-TS101 processor
sequencer anomaly.
NOTE: TigerSHARC processors ONLY.

-anomaly-detect id1[,id2...]
(on page 1-149)

Issues a warning or an error for an anomaly id.

-anomaly-warn
{id1[,id2]|all|none}
(on page 1-149)

Checks assembly instructions against hardware anoma-
lies.
NOTE: Blackfin processors ONLY.

-anomaly-workaround
id1[,id2...]
(on page 1-150)

Implements a workaround for an anomaly id.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-145

Assembler

-char-size-8
(on page 1-150)

Adds /CHAR8 to .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-char-size-32
(on page 1-150)

Adds /CHAR32 to .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-char-size-any
(on page 1-151)

Adds /CHARANY to .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-default-branch-np
(on page 1-151)

Makes branch lines default to NP to avoid ADSP-TS101
processor sequencer anomaly.
NOTE: TigerSHARC processors ONLY.

-default-branch-p
(on page 1-151)

Make branch lines default to the Branch Target Buffer
(BTB).
NOTE: TigerSHARC processors ONLY.

-Dmacro[=definition]
(on page 1-151)

Passes macro definition to the preprocessor.

-double-size-32
(on page 1-152)

Adds /DOUBLE32 to the .SECTIONs in the source file.

-double-size-64
(on page 1-152)

Adds /DOUBLE64 to the .SECTIONs in the source file.

-double-size-any
(on page 1-153)

Adds /DOUBLEANY to the .SECTIONs in the source file.

-expand-symbolic-links
(on page 1-153)

Enables support for Cygwin style paths.

-expand-windows-shortcuts
(on page 1-153)

Enables support for Windows shortcuts.

-file-attr attr [=value]
(on page 1-153)

Creates an attribute in the generated object file.

-flags-compiler -opt1...
(on page 1-153)

Passes each comma-separated option to the compiler.
(Used when compiling .IMPORT C header files.)

-flags-pp ... -opt1...
(on page 1-155)

Passes each comma-separated option to the preprocessor.

Table 1-25. Assembler Command-Line Switch Summary (Cont’d)

Switch Name Purpose

Assembler Command-Line Reference

1-146 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-g
(on page 1-156)

Generates debug information (DWARF-2 format).

–h[elp]
(on page 1-157)

Outputs a list of assembler switches.

-i|-I directory pathname
(on page 1-157)

Searches a directory for included files.

–l filename
(on page 1-158)

Outputs the named listing file.

–li filename
(on page 1-159)

Outputs the named listing file with #include files
expanded.

-M
(on page 1-159)

Generates make dependencies for #include and data
files only; does not assemble. For example, -M suppresses
the creation of an object file.

-MM
(on page 1-159)

Generates make dependencies for #include and data
files. Use -MM for make dependencies with assembly.

–Mo filename
(on page 1-160)

Writes make dependencies to the filename specified.
The -Mo option is for use with either the -M or -MM
option. If -Mo is not present, the default is <stdout> dis-
play.

–Mt filename
(on page 1-160)

Specifies the make dependencies target name. The -Mt
option is for use with either the -M or -MM option. If -Mt
is not present, the default is base name plus 'DOJ'.

-micaswarn
(on page 1-160)

Treats multi-issue conflicts as warnings.
NOTE: Blackfin processors ONLY.

-no-anomaly-detect
id1[,id2...]
(on page 1-161)

Do not issue a warning or an error for an anomaly id.

-no-anomaly-workaround
id1[,id2...]
(on page 1-161)

Do not implement a workaround for an anomaly id.

-no-expand-symbolic-links
(on page 1-161)

Disables support for Cygwin style paths.

Table 1-25. Assembler Command-Line Switch Summary (Cont’d)

Switch Name Purpose

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-147

Assembler

-no-expand-windows-shortcuts
(on page 1-162)

Disables support for Windows shortcuts.

-no-temp-data-file
(on page 1-162)

Suppresses writing temporary data to a disk file.
NOTE: Blackfin processors ONLY.

-no-source-dependency
(on page 1-160)

Suppresses output of the source filename in the depen-
dency output produced when "-M" or "-MM" has been
specified.

–o filename
(on page 1-162)

Outputs the named object [binary] file.

-pp
(on page 1-163)

Runs the preprocessor only; does not assemble.

-proc processor
(on page 1-163)

Specifies a target processor for which the assembler
should produce suitable code.

-save-temps
(on page 1-164)

Saves intermediate files

–si-revision version
(on page 1-164)

Specifies silicon revision of the specified processor.

-sp
(on page 1-165)

Assembles without preprocessing.

-stallcheck={none|cond|all}
(on page 1-165)

Displays stall information:
• none - no messages
• cond - conditional stalls only (default)
• all - all stall information

NOTE: Blackfin processors ONLY.

-v or -verbose
(on page 1-165)

Displays information on each assembly phase.

–version
(on page 1-165)

Displays version information for the assembler and pre-
processor programs.

-w
(on page 1-166)

Disables all assembler-generated warnings.

Table 1-25. Assembler Command-Line Switch Summary (Cont’d)

Switch Name Purpose

Assembler Command-Line Reference

1-148 VisualDSP++ 5.0 Assembler and Preprocessor Manual

A description of each command-line switch includes information about
case-sensitivity, equivalent switches, switches overridden/contradicted by
the one described, and naming and spacing constraints on parameters.

-align-branch-lines

This switch is used with TigerSHARC processors ONLY.

The -align-branch-lines switch directs the assembler to align branch
instructions (JUMP, CALL, CJMP, CJMP_CALL, RETI, and RTI) on quad-word
boundaries by inserting NOP instructions prior to the branch instruction.
This may be done by adding NOP instructions in free slots in previous
instruction lines.

-Werror number[,number ...]
(on page 1-166)

Selectively turn assembler messages into errors.

-Winfo number[,number ...]
(on page 1-166)

Selectively turns assembler messages into informationals.

-Wno-info
(on page 1-166)

Does not display informational assembler messages..

-Wnumber[,number ...]
(on page 1-166)

Selectively disables warnings by one or more message
numbers. For example, -W1092 disables warning mes-
sage ea1092.

-Wsuppress number[,number...]
(on page 1-167)

Selectively turns off assembler messages.

-Wwarn number[,number ...]
(on page 1-167)

Selectively turns assembler messages into warnings.

-Wwarn-error
(on page 1-167)

Display all assembler warning messages as errors.

Table 1-25. Assembler Command-Line Switch Summary (Cont’d)

Switch Name Purpose

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-149

Assembler

-anomaly-detect [id1[,id2...]]

The -anomaly-detect switch directs the assembler to check assembly
instructions for a specific hardware anomaly. Switch parameter is:

id Anomaly identifier (for example, 05-00-0245 or 05000245)

The check may result in an assembler warning or error when the assembler
encounters assembly code on which the anomaly has an impact. This
option overrules any default behavior for the anomaly.

A warning may be issued if the assembler always implements a
workaround for the anomaly instead of a check.

-anomaly-warn {id1[,id2]|all|none}

The -anomaly-warn switch directs the assembler to check assembly
instructions against hardware anomalies. Switch parameters are:

id Anomaly identifier (for example, 05-00-0245 or 05000245)

all Uses all identifiers known to the assembler

none Do nothing

This switch allows the user to control which anomaly warnings are to be
displayed. Typically, code is assembled using the “-anomaly-warn all”
selection. This will cause the assembler to issue a warning for all anomalies
it knows about. To date, this includes the following anomaly IDs:

05000165 05000209 05000227 05000244

05000245 F3F008 F3F013 F3F021

Any combination of these warning IDs can be used as part of the
command-line option.

This switch is used with Blackfin processors ONLY.

Assembler Command-Line Reference

1-150 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-anomaly-workaround [id]

The -anomaly-workaround switch directs the assembler to switch on any
workaround instruction for a specific hardware anomaly. Switch parame-
ter is:

id Anomaly identifier (for example, 05-00-0245 or 05000245)

The workaround may result in an assembler altering the user assembly
code so that it cannot encounter the anomaly. The assembler may issue a
warning to indicate that it has altered the user assembly code. This option
overrules any default behavior for the anomaly.

A warning may be issued if the assembler always checks for the anomaly
and has no workaround.

-char-size-8

The -char-size-8 switch directs the assembler to add /CHAR8 to
.SECTIONs in the source file that do not have char size qualifiers.
For .SECTIONs in the source file that already have a char size qualifier,
this option is ignored and a warning is produced. For more information,
see “.SECTION, Declare a Memory Section” on page 1-122.

This switch is used with TigerSHARC processors ONLY.

-char-size-32

The -char-size-32 switch directs the assembler to add /CHAR32 to
.SECTIONs in the source file that do not have char size qualifiers.
For .SECTIONs in the source file that already have a char size qualifier,
this option is ignored and a warning is produced. For more information,
see “.SECTION, Declare a Memory Section” on page 1-122.

This switch is used with TigerSHARC processors ONLY.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-151

Assembler

-char-size-any

The -char-size-any switch directs the assembler to add /CHARANY to
.SECTIONs in the source file that do not have char size qualifiers.
For .SECTIONs in the source file that already have a char size qualifier,
this option is ignored and a warning is produced. For more information,
see “.SECTION, Declare a Memory Section” on page 1-122.

This switch is used with TigerSHARC processors ONLY.

-default-branch-np

The -default-branch-np (branch lines default to NP) switch directs the
assembler to stop branch instructions (JUMP, CALL) from using the branch
target buffer (BTB). This can be used to avoid a sequencer anomaly
present on the ADSP-TS101 processor only. It is still possible to make
branch instructions use the BTB when -default-branch-np is used by
adding the (P) instruction option; for example, JUMP lab1 (P);;.

This switch is used with TigerSHARC processors ONLY.

-default-branch-p

The -default-branch-p switch makes branch instructions (JUMP, CALL)
use the branch target buffer (BTB). This is the default behavior. It is still
possible to make branch instructions not use the BTB when
-default-branch-p is used by adding the (NP) instruction option;
for example, JUMP labe1 (NP);;.

This switch is used with TigerSHARC processors ONLY.

-Dmacro[=definition]

The -D (define macro) switch directs the assembler to define a macro and
pass it to the preprocessor. See “Using Assembler Feature Macros” on
page 1-27 for the list of predefined macros.

Assembler Command-Line Reference

1-152 VisualDSP++ 5.0 Assembler and Preprocessor Manual

For example,

–Dinput // defines input as 1

–Dsamples=10 // defines samples as 10

–Dpoint=’Start’ // defines point as the string ‘Start’

-double-size-32

The -double-size-32 switch directs the assembler to add /DOUBLE32
to .SECTIONs in the source file that do not have double size qualifiers.
For .SECTIONs in the source file that already have a double size qualifier,
this option is ignored and a warning is produced. For more information,
see “.SECTION, Declare a Memory Section” on page 1-122.

-double-size-64

The -double-size-64 switch directs the assembler to add /DOUBLE64
to .SECTIONs in the source file that do not have double size qualifiers.
For .SECTIONs in the source file that already have a double size qualifier,
this option is ignored and a warning is produced. The -double-size-any
flag should be used to avoid a linker warning when compiling C/C++
sources with -double-size-64.

Warning Example:

[Warning li2151] Input sections have inconsistent qualifiers

as follows.

For more information, see “.SECTION, Declare a Memory Section” on
page 1-122.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-153

Assembler

-double-size-any

The -double-size-any switch directs the assembler to add /DOUBLEANY
to .SECTIONs in the source file that do not have double size qualifiers,
making SECTION contents independent of size of double type. For
.SECTIONs in the source file that already have a double size qualifier,
this option is ignored and a warning is produced. For more information,
see “.SECTION, Declare a Memory Section” on page 1-122.

-expand-symbolic-links

The expand-symbolic-links switch directs the assembler to correctly
access directories and files whose name or path contain Cygwin path
components.

-expand-windows-shortcuts

The expand-windows-shortcuts switch directs the assembler to correctly
access directories and files whose name or path contain Windows
shortcuts.

-file-attr attr[=val]

The -file-attr (file attribute) switch directs the assembler to add an
attribute (attr) to the object file. The attribute will be given the value
(val) or “1” if the value is omitted. Attr should follow the rules for
naming symbols. Val should be double-quoted unless it follows the rules
for naming symbols. See “Assembler Keywords and Symbols” on
page 1-39 for more information on naming conventions.

-flags-compiler

The -flags-compiler -opt1 [,-opt2...] switch passes each
comma-separated option to the C compiler. The switch takes a list of one
or more comma-separated compiler options that are passed on the com-
piler command line for compiling .IMPORT headers. The assembler calls

Assembler Command-Line Reference

1-154 VisualDSP++ 5.0 Assembler and Preprocessor Manual

the compiler to process each header file in an .IMPORT directive. It calls the
compiler with the -debug-types option along with any -flags-compiler
switches given on the assembler command line.

For example:

// file.asm has .IMPORT "myHeader.h"

easmbkln -proc ADSP-BF535 -flags-compiler -I/Path -I. file.asm

The rest of the assembly program, including its #include files, are
processed by the assembler preprocessor. The -flags-compiler switch
processes a list of one or more valid C compiler options, including the
-D and -I options.

User-Specified Defines Options

-D (defines) options in an assembler command line are passed to the
assembler preprocessor, but they are not passed to the compiler for
.IMPORT header processing. If #defines are used for .IMPORT header
compilation, they must be explicitly specified with the -flags-compiler
switch.

For example:

// file.asm has .IMPORT "myHeader.h"

easmblkfn -proc ADSP-BF535 -DaDef -flags-compiler -DbDef,

-DbDefTwo=2 file.asm

// -DaDef is not passed to the compiler

ccblkfn -proc ADSP-BF535 -c -debug-types -DbDef -DbDefTwo=2

myHeader.h

See “Using Assembler Feature Macros” on page 1-27 for the list
of predefined macros, including default macros.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-155

Assembler

Include Options

The -I (include search path) options and -flags-compiler arguments
are passed to the C compiler for each .IMPORT header compilation.
The compiler include path is always present automatically.

Use the -flags-compiler switch to control the order that the include
directories are searched. The -flags-compiler switch attributes take
precedence from the assembler’s -I options.

For example,

easmblkfn -proc ADSP-BF535 -I/aPath -DaDef -flags-compiler

-I/cPath,-I. file.asm

ccblkfn -proc ADSP-BF535 -c -debug-types -I/cPath -I. myHeader.h

The .IMPORT C header files are preprocessed by the C compiler
preprocessor. The struct headers are standard C headers, and the
standard C compiler preprocessor is needed. The rest of the assembly
program (including its #include files) are processed by the assembler
preprocessor.

Assembly programs are preprocessed using the pp preprocessor
(the assembler/linker preprocessor) as well as -I and -D options from
the assembler command line. However, the pp call does not receive the
-flags-compiler switch options.

 -flags-pp -opt1 [,-opt2...]

The -flags-pp switch passes each comma-separated option to the
preprocessor.

Use -flags-pp with caution. For example, if pp legacy comment
syntax is enabled, the comment characters become unavailable
for non-comment syntax.

Assembler Command-Line Reference

1-156 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-g

The -g (generate debug information) switch directs the assembler to
generate complete data type information for arrays, functions, and the
C structs. This switch also generates DWARF2 function information with
starting and ending ranges based on the myFunc: … myFunc.end: label
boundaries, as well as line number and symbol information in DWARF2
binary format, allowing you to debug the assembly source files.

When the assembler’s -g switch is in effect, the assembler produces a
warning when it is unable to match a *.end label to a matching beginning
label. This feature can be disabled using the -Wnnnn switch (see
on page 1-166).

WARNING ea1121: Missing End Labels

Warning ea1121 occurs on assembly file debug builds (using the -g
switch) when a globally-defined function or label for a data object
is missing its corresponding ending label, with the naming convention
label + “.end”. For example:

[Warning ea1121] "./gfxeng_thickarc.asm":42 _gfxeng_thickarc:

-g assembly with global function without ending label. Use

'_gfxeng_thickarc.end' or '_gfxeng_thickarc.END' to mark the

ending boundary of the function for debugging information for

automated statistical profiling of assembly functions.

The ending label marks the boundary of the end of a function. Compiled
code automatically provides ending labels. Hand-written assembly code
needs to have the ending labels explicitly added to tell the tool chain
where the ending boundary is. This information is used to automate
statistical profiling of assembly functions. It is also needed by the linker
to eliminate unused functions and other features.

To suppress a specific assembler warning by unique warning number,
the assembler provides the following option:

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-157

Assembler

-Wsuppress 1121

It is highly recommended that warning ea1121 not be suppressed
and the code be updated to have ending labels.

Functions (Code)

_gfxeng_vertspan:

[--sp] = fp;

...

rts;

Add an ending label after rts;. Use the prefix “.end” and begin the label
with “.” to have it treated as an internal label that is not displayed in the
debugger.

.global _gfxeng_vertspan;

_gfxeng_vertspan:

[--sp] = fp;

...

rts;

._gfxeng_vertspan.end:

-h[elp]

The -h (or -help) switch directs the assembler to output to standard
output a list of command-line switches with a syntax summary.

-i

The -idirectory (or -I) switch (include directory path) directs the
assembler to append the specified directory (or a list of directories
separated by semicolons “;”) to the search path for included files.

 No space is allowed between -i and the path name.

Assembler Command-Line Reference

1-158 VisualDSP++ 5.0 Assembler and Preprocessor Manual

These files are:

• Header files (.h) included with the #include preprocessor
command

• Data initialization files (.dat) specified with the .VAR assembly
directive

The assembler passes this information to the preprocessor; the
preprocessor searches for included files in the following order:

1. Directory for assembly program

2. ...\include subdirectory of the VisualDSP++ installation
directory

3. Specified directory (or list of directories). The order of the list
defines the order of multiple searches.

The current directory is the directory where the assembly service is, not the
directory of the project. Usage of full path names for the -I switch on the
command line is recommended.

For example,

easm21K -proc ADSP-21161 -I "\bin\include" file.asm

-l filename

The -l filename (listing) switch directs the assembler to generate the
named listing file. Each listing file (.lst) shows the relationship between
your source code and instruction opcodes that the assembler produces.

For example,

easmblkfn -proc ADSP-BF533 -I\path -I. -l file.lst file.asm

The file name is a required argument to the -l switch. For more
information, see “Reading a Listing File” on page 1-35.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-159

Assembler

-li filename

The -li (listing) switch directs the assembler to generate the named listing
file with #include files. The file name is a required argument to the -li
switch. For more information, see “Reading a Listing File” on page 1-35.

-M

The -M (generate make rule only) assembler switch directs the assembler to
generate make dependency rules, suitable for the make utility, describing
the dependencies of the source file. No object file is generated for -M
assemblies. For make dependencies with assembly, use the -MM switch.

The output, an assembly make dependencies list, is written to stdout in
the standard command-line format:

“target_file”: “dependency_file.ext”

dependency_file.ext may be an assembly source file, a header file
included with the #include preprocessor command, a data file, or a header
file imported via the .IMPORT directive.

The -Mo filename switch writes make dependencies to the filename
specified instead of <stdout>. For consistency with the compilers, when
-o filename is used with -M, the assembler outputs the make dependencies
list to the named file. The -Mo filename takes precedence if both
-o filename and -Mo filename are present with -M.

-MM

The -MM (generate make rule and assemble) assembler switch directs the
assembler to output a rule, suitable for the make utility, describing the
dependencies of the source file. The assembly of the source into an object
file proceeds normally. The output, an assembly make dependencies list,
is written to stdout.The only difference between -MM and -M actions is
that the assembling continues with -MM. See “-M” for more information.

Assembler Command-Line Reference

1-160 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-Mo filename

The -Mo (output make rule) assembler switch specifies the name of the
make dependencies file that the assembler generates when you use the -M
or -MM switch. If -Mo is not present, the default is <stdout> display. If the
named file is not in the current directory, you must provide the path name
in double quotation marks (" ").

The -Mo filename switch takes precedence over the -o filename
switch.

-Mt filename

The -Mt filename (output make rule for named object) assembler switch
specifies the name of the object file for which the assembler generates the
make rule when you use the -M or -MM switch. If the named file is not in
the current directory, you must provide the path name. If -Mt is not
present, the default is the base name plus the .doj extension. See “-M”
for more information.

-micaswarn

The -micaswarn switch treats multi-issue conflicts as warnings.

This switch is used with Blackfin processors ONLY.

-no-source-dependency

The -no-source-dependency switch directs the assembler not to print any-
thing about dependency between the .asm source file and the .doj object
file when outputting dependency information. This switch can only be
used in conjunction with the -M or -MM switches (see on page 1-159).

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-161

Assembler

-no-anomaly-detect [id1[,id2...]]

The -no-anomaly-detect switch directs the assembler to switch off any
check for a specific anomaly ID in the assembler. No assembler warning
or error will be issued when the assembler encounters assembly code that
the anomaly will have an impact upon. This option overrules any default
behavior for the anomaly.. The switch parameter is:

id Anomaly identifier (for example, 05-00-0245 or 05000245)

A warning may be issued if the assembler always implements a
workaround for the anomaly instead of a check.

-no-anomaly-workaround [id1[,id2...]]

The -no-anomaly-workaround switch directs the assembler to switch off
any workaround for a specific anomaly id in the assembler. The assembler
will not alter the user assembly code so that it cannot encounter the
anomaly. This option overrules any default behavior for the anomaly.

The switch parameter is:

id Anomaly identifier (for example, 05-00-0245 or 05000245)

A warning may be issued if the assembler always checks for the anomaly
and has no workaround.

-no-expand-symbolic-links

The no-expand-symbolic-links switch directs the assembler to not
expand any directories or files whose name or path contain Cygwin path
components.

Assembler Command-Line Reference

1-162 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-no-expand-windows-shortcuts

The -no-expand-windows-shortcuts switch directs the assembler to not
expand directories or files whose name or path contain Windows
shortcuts.

-no-temp-data-file

The -no-temp-data-file switch directs the assembler not to write
temporary data to a memory (disk).

As part of a space saving measure, the assembler stores all data declarations
into a file. This is to allow large sources to assemble more quickly by free-
ing valuable memory resources. By default, the temporary data files are
stored into the system temporary folder (for example, C:\Documents and
Settings\User\Local Settings\Temp) and is given the prefix
“EasmblkfnNode”). These files are removed by the assembler but, if for any
reason the assembler does not complete, these files will not be deleted and
persist in the temporary folder. These files can always be safely deleted in
such circumstances after the assembler has stopped.

This command-line option allows the user to turn off this default feature.
When turned off, all data is stored into internal memory and not written
to the disk.

-o filename

The -o filename (output file) switch directs the assembler to use the
specified filename argument as the output file. This switch names the
output, whether for conventional production of an object, a preprocessed,
assemble-produced file (.is), or make dependency (-M). By default, the
assembler uses the root input file name for the output and appends a .doj
extension.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-163

Assembler

Some examples of this switch syntax are:

easmblkfn -proc ADSP-BF535 -pp -o test1.is test.asm

// preprocessed output goes into test1.is

easmblkfn -proc ADSP-BF535 -o -debug/prog3.doj prog3.asm

// specify directory and filename for the object file

-pp

The -pp (proceed with preprocessing only) switch directs the assembler to
run the preprocessor, but stop without assembling the source into an
object file. When assembling with the -pp switch, the .is file is the final
result of the assembly. By default, the output file name uses the same root
name as the source, with the .is extension.

-proc processor

The -proc processor (target processor) switch specifies that the assembler
produces code suitable for the specified processor.

The processor identifiers directly supported by VisualDSP++ 5.0 are
listed in VisualDSP++ online Help.

For example:

easm21K -proc ADSP-21161 -o bin\p1.doj p1.asm

easmts -proc ADSP-TS201 -o bin\p1.doj p1.asm

easmblkfn -proc ADSP-BF533 -o bin\p1.doj p1.asm

If the processor identifier is unknown to the assembler, it attempts to read
required switches for code generation from the file <processor>.ini.
The assembler searches for the .ini file in the VisualDSP++ System folder.
For custom processors, the assembler searches the section “proc” in the
<processor>.ini file for key “architecture”. The custom processor must
be based on an architecture key that is one of the known processors.

Assembler Command-Line Reference

1-164 VisualDSP++ 5.0 Assembler and Preprocessor Manual

For example, -proc Custom-xxx searches the Custom-xxx.ini file.

See also the -si-revision version switch description
(on page 1-164) for more information on silicon revision of the
specified processor.

-save-temps

The -save-temps (save intermediate files) switch directs the assembler to
retain intermediate files generated and normally removed as part of the
assembly process.

-si-revision version

The -si-revision version (silicon revision) switch directs the assembler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The version parameter
represents a silicon revision for the processor specified by the -proc switch
(on page 1-163).

For example,

easmblkfn -proc ADSP- BF533 -si-revision 0.1

If silicon version “none” is used, no errata workarounds are enabled,
whereas specifying silicon version “any” enables all errata workarounds for
the target processor.

If the -si-revision switch is not used, the assembler will build for the
target processor’s latest known silicon revision and will enable any errata
workarounds appropriate for the latest silicon revision.

The __SILICON_REVISION__ macro is set by the assembler to two
hexadecimal digits representing the major and minor numbers in the
silicon revision. For example, 1.0 becomes 0x100 and 10.21 becomes
0xa15.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-165

Assembler

If the silicon revision is set to “any”, the __SILICON_REVISION__ macro is
set to 0xffff. If the -si-revision switch is set to “none”, the assembler
will not set the __SILICON_REVISION__ macro.

-sp

The -sp (skip preprocessing) switch directs the assembler to assemble the
source file into an object file without running the preprocessor. When the
assembler skips preprocessing, no preprocessed assembly file (.is) is
created.

-stallcheck

The -stallcheck = option switch provides the following choices for
displaying stall information:

This switch is used with Blackfin processors ONLY.

-v[erbose]

The -v (or -verbose) switch directs the assembler to display version and
command-line information for each phase of assembly.

-version

The -version (display version) switch directs the assembler to display
version information for the assembler and preprocessor programs.

Table 1-26. -stallcheck Options

-stallcheck Option Description

-stallcheck=none Displays no messages for stall information

-stallcheck=cond Displays information about conditional stalls only (default)

-stallcheck=all Displays all stall information

Assembler Command-Line Reference

1-166 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-w

The -w (disable all warnings) switch directs the assembler not to display
warning messages generated during assembly.

-Werror number[,number]

The -Werror number switch turns the specified assembler messages into
errors. For example, “-Werror 1177” turns warning message ea1177 into
an error. This switch optionally accepts a list, such as [,number ...].

Many error messages cannot be altered in severity as the assembler
behavior is unknown.

-Winfo number[,number]

The -Winfo number switch turns the specified assembler messages into
informational messages. For example, “-Winfo 1177” turns warning
message ea1177 into an informational message. This switch optionally
accepts a list, such as [,number ...].

Many error messages cannot be altered in severity as the assembler
behavior is unknown.

-Wno-info

The -Wno-info switch turns off all assembler informational messages.

-Wnumber[,number]

The -Wnumber (warning suppression) switch selectively disables warnings
specified by one or more message numbers. For example, -W1092 disables
warning message ea1092. Optionally, this switch accepts a list, such as
[,number ...]. See also “-g” on page 1-156.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-167

Assembler

-Wsuppress number[,number]

The -Wsuppress number switch selectively turns off assembler messages.
For example, “-Wsuppress 1177” turns off warning message ea1177.
Optionally, this switch accepts a list, such as [,number ...].

Many error messages cannot be altered in severity as the assembler
behavior is unknown.

-Wwarn number[,number]

The -Wwarn number switch turns the specified assembler messages into
warnings. For example, “-Wwarn 1154” turns error message ea1154 into a
warning. Optionally, this switch accepts a list, such as [,number ...].

Many error messages cannot be altered in severity as the assembler
behavior is unknown.

-Wwarn-error

The -Wwarn-error switch displays all the assembler warning messages as
errors.

Assembler Command-Line Reference

1-168 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Specifying Assembler Options in VisualDSP++
Within the VisualDSP++ IDDE, specify tool settings for project builds.
Use the Project menu to open the Project Options dialog box

Figure 1-5 shows an example of the Project page of the Project Options
dialog box showing selections for a Blackfin processors.

This dialog box allows you to select the target processor, type and name
of the executable file, as well as VisualDSP++ tools available for use with
the selected processor.

Figure 1-5. Example: Project Options Dialog Box - Project Page

VisualDSP++ 5.0 Assembler and Preprocessor Manual 1-169

Assembler

When using the VisualDSP++ IDDE, use the Assemble page of the
Project Options dialog box (Figure 1-6) to select and/or set assembler
functional options.

Most dialog box options have corresponding assembler command-line
switches described in “Assembler Command-Line Switch Descriptions”
on page 1-144.

For more information, use the VisualDSP++ context-sensitive Help view
select information on assembler options you can specify in VisualDSP++.
To do that, click on the toolbar’s “?” button and then click on the dialog
box field or box for which you require information.

Use the Additional options field to enter appropriate command-line
switches, file names, and options that do not have corresponding controls
on the Assemble page but are available via command-line invocation.

Figure 1-6. Example: Project Options Dialog Box – Assemble Page

Assembler Command-Line Reference

1-170 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Assembler options apply to directing calls to an assembler when assem-
bling .asm files. Changing assembler options in VisualDSP++ does not
affect the assembler calls made by the compiler during the compilation of
.C/.CPP files.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-1

Preprocessor

2 PREPROCESSOR

The preprocessor program (pp.exe) evaluates and processes preprocessor
commands in source files on all supported processors. The preprocessor
commands direct the preprocessor to define macros and symbolic con-
stants, include header files, test for errors, and control conditional
assembly and compilation. The preprocessor supports ANSI C standard
preprocessing with extensions, such as “?” and “...”.

The preprocessor is run by other build tools (assembler and linker) from
the operating system’s command line or from within the VisualDSP++ 5.0
environment. The pp preprocessor can also operate from the command
line with its own command-line switches.

This chapter contains:

• “Preprocessor Guide” on page 2-2
Contains the information on building programs

• “Preprocessor Command Reference” on page 2-21
Describes the preprocessor’s commands, with syntax and usage
examples

• “Preprocessor Command-Line Reference” on page 2-44
Describes the preprocessor’s command-line switches, with syntax
and usage examples

Preprocessor Guide

2-2 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Preprocessor Guide
This section describes pp preprocessor information used when building
programs from a command line or from within the VisualDSP++ 5.0
environment. Software developers who use the preprocessor should be
familiar with:

• “Writing Preprocessor Commands” on page 2-3

• “Header Files and the #include Command” on page 2-4

• “Writing Macros” on page 2-7

• “Using Predefined Preprocessor Macros” on page 2-15

• “Specifying Preprocessor Options” on page 2-20

Compiler Preprocessor

The compiler has it own preprocessor that enables the use of preprocessor
commands within C/C++ source. The compiler preprocessor automati-
cally runs before the compiler. This preprocessor is separate from the
assembler preprocessor and has some features that may not be used within
your assembly source files. For more information, refer to the
VisualDSP++ 5.0 C/C++ Compiler and Library Manual for the target
processor.

Assembler Preprocessor

The assembler preprocessor differs from the ANSI C standard preproces-
sor in several ways. First, the assembler preprocessor supports a “?”
operator (see on page 2-42) that directs the preprocessor to generate a
unique label for each macro expansion. Second, the assembler preproces-
sor does not treat “.” as a separate token. Instead, “.” is always treated as

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-3

Preprocessor

part of an identifier. This behavior matches the assembler’s behavior,
which uses “.” to start directives and accepts “.” in symbol names.
For example, the following command sequence:

#define VAR my_var
.VAR x;

does not cause any change to the variable declaration. The text “.VAR” is
treated as a single identifier which does not match the macro name VAR.

The standard C preprocessor treats .VAR as two tokens (“.” and “VAR”)
and makes the following substitution:

.my_var x;

The assembler preprocessor also produces assembly-style strings
(single-quote delimiters) instead of C-style strings.

Finally, under command-line switch control, the assembler preprocessor
supports legacy assembler commenting formats (“!” and “{ }”).

Writing Preprocessor Commands
Preprocessor commands begin with a pound sign (#) and end with a car-
riage return. The pound sign must be the first non-white space character
on the line containing the command. If the command is longer than one
line, use a backslash (\) and a carriage return to continue the command on
the next line. Do not place any characters between the backslash and the
carriage return. Unlike assembly directives, preprocessor commands are
case sensitive and must be lowercase.

For more information on preprocessor commands, see “Preprocessor
Command-Line Reference” on page 2-44.

Preprocessor Guide

2-4 VisualDSP++ 5.0 Assembler and Preprocessor Manual

For example:

#include "string.h"

#define MAXIMUM 100

When the preprocessor runs, it modifies the source code by:

• Including system header files and user-defined header files

• Defining macros and symbolic constants

• Providing conditional assembly

Specify preprocessing options with preprocessor commands—lines that
start with a # character. In the absence of commands, the preprocessor
performs these three global substitutions:

• Replaces comments with single spaces

• Deletes line continuation characters (\)

• Replaces macro references with corresponding expansions

The following cases are notable exceptions to the described substitutions:

• The preprocessor does not recognize comments or macros within
the file name delimiters of an #include command.

• The preprocessor does not recognize comments or predefined
macros within a character or string constant.

Header Files and the #include Command
Header (.h) files contain lines of source code to be included (textually
inserted) into another source file. Typically, header files contain declara-
tions and macro definitions.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-5

Preprocessor

The #include preprocessor command includes a copy of the header file
at the location of the command. There are three forms for the #include
command, as described next.

System Header Files

Syntax: #include <filename>

The file name is placed between a pair of angle bracket characters. The file
name in this form is interpreted as a system header file. These files are
used to declare global definitions, especially memory-mapped registers,
system architecture, and processors.

Example:

#include <device.h>

#include <major.h>

System header files are installed in the .../VisualDSP/Blackfin/include
folder for the processor family.

User Header Files

Syntax: #include "filename"

The file name is placed within a pair of double quote characters. The file
name in this form is interpreted as a user header file. These files contain
declarations for interfaces between the source files of the program.

Example:

#include "defTS.h"

#include "fft_ovly.h"

Preprocessor Guide

2-6 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Sequence of Tokens

Syntax: #include text

In this case, text is a sequence of tokens subject to macro expansion by
the preprocessor.

It is an error if after macro expansion the text does not match one of the
two header file forms. If the text on the line after the #include is not
placed between double quotes (as a user header file) or between angle
brackets (as a system header file), the preprocessor performs macro
expansion on the text. After that expansion, the line requires either of the
two header file forms.

Unlike most preprocessor commands, the text after the #include
is available for macro expansion.

Examples:

// define preprocessor macro with name for include file

#define includefilename "header.h"

// use the preprocessor macro in a #include command

#include includefilename

// the code above evaluates to #include "header.h"

// define preprocessor macro to build system include file

#define syshdr(name) <name ## .h>

// use the preprocessor macro in a #include command

#include syshdr(adi)

// the code above evaluates to #include <adi.h>

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-7

Preprocessor

Include Path Search

It is good programming practice to distinguish between system header
files and user header files. The only technical difference between the two
different notations is the directory search order that the assembler follows
to locate the specified header file.

For example, when using Blackfin processors, the #include <file> search
order is:

1. The include path specified by the -I switch

2. .../VisualDSP/Blackfin/include folders

The #include "file" search order is:

1. The local directory – the directory in which the source file resides

2. The include path specified by the -I switch

3. ...VisualDSP/Blackfin/include folders

If you use the -I and the -I- switches on the command line, the system
search path (#include < >) is modified in such a manner that search the
directories specified with the -I switch that appear before the directory
specified with the -I- switch are ignored. For syntax information and
usage examples on the #include preprocessor command, see “#include” on
page 2-33.

Writing Macros
The assembler/linker preprocessor processes macros in assembly source
files and linker description files (.ldf). Macros provide for text
substitution.

The term macro defines a macro-identifying symbol and its corresponding
definition that the preprocessor uses to substitute the macro reference(s).

Preprocessor Guide

2-8 VisualDSP++ 5.0 Assembler and Preprocessor Manual

For example, use macros to define symbolic constants or to manipulate
register bit masks in an assembly program based on a macro argument,
as follows:

/* Define a symbolic constant */

#define MAX_INPUT 256

/* Mask peripheral #x interrupt */

#define SIC_MASK(x) (1 << ((x)&0x1F))

Macros can be defined to repeat code sequences in assembly source code.
When you pass parameters to a code macro, the macro serves as a
general-purpose routine that is usable in many different programs.
The block of instructions that the preprocessor substitutes can vary
with each new set of arguments.

A macro differs from a subroutine call. During assembly, each instance
of a macro inserts a copy of the same block of instructions, so multiple
copies of that code appear in different locations in the object code.
By comparison, a subroutine appears only once in the object code, and the
block of instructions at that location are executed for every call.

For more information, see:

• “#define” on page 2-23

• “Macro Definition and Usage Guidelines” on page 2-9

• “Examples of Multi-Line Code Macros with Arguments” on
page 2-12

• “Debugging Macros” on page 2-13

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-9

Preprocessor

Macro Definition and Usage Guidelines

A macro definition can be any text that may occur legally in the source file
that references the macro. In assembly files, the macro may expand to
include instructions, directives, register names, constants, and so on.
In LDFs, a macro may expand to include LDF commands, memory
descriptions and other items that are legal in an LDF. The macro
definition may also have other macro names that are replaced with their
own definitions.

The following guidelines are provided to help you construct macros and
use them appropriately.

• A macro definition must begin with #define and must end with a
carriage return.

• Macro termination. If a macro definition ends with a terminator
on the instruction [one semicolon (;) for SHARC and Blackfin
processors; two semicolons (;;) for TigerSHARC processors], do
not place a terminator at the end of the macro (usage) in an assem-
bly statement. However, if a macro definition does not end with a
terminator, each instance of the macro usage must be followed by
the terminator in the assembly statement.

Be consistent with regard to how you use terminators in macro
definitions.

Examples shown in this section omit the terminator in the macro
definition and use the terminator in the assembly text. Note that
the mac; statement in the following Blackfin example has a “;”.

// macro definition

#define mac mrf = mrf+R2*R5(ssfr)

// macro usage

R2 = R1-R0; // set parameters

Preprocessor Guide

2-10 VisualDSP++ 5.0 Assembler and Preprocessor Manual

R5 = DM(I1,M0);

mac;

• Line continuation. A macro definition can be split across multiple
lines for readability. When a macro definition is longer than one
line, place a backslash (\) character at the end of each line (except
the last line) for line continuation.

Incorrect
#define MultiLineMacro

instruction1; \

instruction2; \

instruction3

Notice that the backslash in the #define line is missing.

Correct
#define MultiLineMacro \

instruction1; \

instruction2; \

instruction3

No characters are permitted on a line after a backslash.

A warning is generated when there is white space after what might
have been intended as a line continuation. For example:

#define macro1 \

instruction1; \(whitespace)

instruction2; \

instruction3

[Warning pp0003] "header.h":3

The backslash at the end of this line

is followed by whitespace

It is not a line continuation

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-11

Preprocessor

• Comments within #define. Use C-style comments (/* comment

*/) within multi-line macros. Otherwise, the line-continuation
character (\) will cause the next line to be concatenated to the com-
ment, thus becoming part of the comment.

The preprocessor supports C-style comments (/* comment */) as
well as C++-style comments (// comment). The C-style comment
has a delimiter at the start and end of the comment; the C++-style
comment begins at the “//” and terminates at the end of the line.

The “terminates at the end of the line” aspect of C++-style com-
ments renders “//” comments unsuitable within multi-line macro
definitions. The line continuation character causes the next line to
be concatenated to the comment, thus becoming part of the com-
ment.

The following code fragment demonstrates the problem.
#define macro \

first line; \

second line

when expanded by writing “macro” in your .asm file, this code
becomes:

first line; second line

If you use C-style comments, you can write:

#define macro \

/* this macro has two lines */ \

first line; \

/* and two comments */ \

second line

Preprocessor Guide

2-12 VisualDSP++ 5.0 Assembler and Preprocessor Manual

which will expand to:

first line; second line

However, if you use C++ style comments (as shown below),

#define macro \

// this comment will devour the rest of the macro \

first line; \

second line

the macro expands into an “empty” macro.

In the code above, the first line of the macro definition starts a
comment. Since there are line-continuation characters, the logical
end of line for that comment is the end of the macro. Thus, the
code yields an “empty” macro.

• Macro nesting (macros called within another macro) is limited only
by the memory available during preprocessing. Recursive macro
expansion, however, is not allowed.

Refer also to “#define” on page 2-23 for reference information on the
#define command.

Examples of Multi-Line Code Macros with Arguments

The following are examples of multi-line code macros with arguments.

Blackfin Code Example:

#define false 0

#define xchg(xv,yv) \

P0=xv; \

P1=yv; \

R0=[P0]; \

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-13

Preprocessor

R1=[P1]; \

[P1]=R0; \

[P0]=R1

SHARC Code Example:

#define ccall(x) \

R2=I6; I6=I7; \

JUMP (pc, x) (db); \

DM(I7,M7)=R2; \

DM(I7, M7)=PC

Macro Usage in Code Section:

<instruction code here>

ccall(label1);

<instruction code here>

label1: NOP;

<instruction code here>

TigerSHARC Code Example:

#define copy (src,dest) \

J0 = src;; \

J1 = dest;; \

R0 = [J0+0];; \

[J1+0] = R0

Debugging Macros

If you get an unexpected syntax error from the assembler on a macro
expansion, it can be helpful to debug the macro by looking at what the
preprocessor produced post preprocessing. The intermediate file produced
by the preprocessor is the .is output file.

Preprocessor Guide

2-14 VisualDSP++ 5.0 Assembler and Preprocessor Manual

From the VisualDSP++ IDDE, select the Save temporary files check box
on the Assemble page of the Project Options dialog box. If you are run-
ning the assembler from the command line, add the -save-temps switch
(see “-save-temps” on page 1-164).

Tips for Debugging Macros

Assembly programmers may find it useful to include the processor system
header files for pre-defined macros that are helpful to assembly language
programmers for that processor family. These are known as “def headers”.
For example, an ADSP-BF534 programmer would use:

// Header is located in <install_path>/Blackfin/include

#include "defBF534.h"

A symbol in your program may inadvertently use the same spelling as a
#define in the def header. Typically, this results in a syntax error due to
the symbol being replaced with a constant or constant expression, which is
not what you intended.

For example, defBF534.h contains:

#define ALARM 0x0002 /* Alarm Interrupt Enable */

If an assembly program uses ALARM as a symbol name, it will get a textual
replacement of “0x0002”, making the program illegal, as demonstrated by
the following code fragment.

#include "defBF534.h"

#define FALSE 0

#define TRUE 1

.SECTION data1;

.VAR ALARM = FALSE;

[Error ea5004] "alarm.asm":7 Syntax Error in :

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-15

Preprocessor

.var 0x0002 = 1;

syntax error is at or near text '0x0002'.

Attempting error recovery by ignoring text until the ';'

Using Predefined Preprocessor Macros
In addition to macros you define, the pp preprocessor provides a set of
predefined macros and feature macros that can be used in assembly code.
The preprocessor automatically replaces each occurrence of the macro
reference found throughout the program with the specified (predefined)
value. The DSP development tools also define feature macros that can be
used in your code.

The __DATE__, __FILE__, and __TIME__ macros return strings
within the single quotation marks (‘ ’) suitable for initializing
character buffers (see “.VAR and ASCII String Initialization Sup-
port” on page 1-138).

Table 2-1 describes the common predefined macros provided by the pp
preprocessor. Table 2-2, Table 2-3, and Table 2-4 list processor-specific
feature macros that are defined by the project development tools to specify
the architecture and language being processed.

Preprocessor Guide

2-16 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Table 2-1. Common Predefined Preprocessor Macros

Macro Definition

ADI Defines ADI as 1.

__LastSuffix__ Specifies the last value of suffix that was used to build prepro-
cessor generated labels.

__LINE__ Replaces __LINE__ with the line number in the source file that
the macro appears on.

__FILE__ Defines __FILE__ as the name and extension of the file in
which the macro is defined, for example, ‘macro.asm’.

__TIME__ Defines __TIME__ as current time in the 24-hour format
‘hh:mm:ss’, for example, ‘06:54:35’.

__DATE__ Defines __DATE__ as current date in the format ‘mm dd yyyy’,
for example, ‘Oct 02 2000’.

_LANGUAGE_ASM Always set to 1

_LANGUAGE_C Equals 1 when used for C compiler calls to specify .IMPORT
headers. Replaces _LANGUAGE_ASM.

Table 2-2. SHARC Feature Preprocessor Macros

Macro Definition

__ADSP21000__ Always 1 for SHARC processor tools

__ADSP21020__ Present when running easmts -proc ADSP-21020
with ADSP-21020 processor

__ADSP21060__ Present when running easmts -proc ADSP-21060
with ADSP-21060 processor

__ADSP21061__ Present when running easmts -proc ADSP-21061
with ADSP-21061 processor

__ADSP21062__ Present when running easmts -proc ADSP-21062
with ADSP-21062 processor

__ADSP21065L__ Present when running easmts -proc ADSP-21065L
with ADSP-21065L processor

__ADSP21160__ Present when running easmts -proc ADSP-21160
with ADSP-21160 processor

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-17

Preprocessor

__ADSP21161__ Present when running easmts -proc ADSP-21161
with ADSP-21161 processor

__ADSP2106x__ Present when running easmts -proc ADSP-2106x
with ADSP-2106x processor

__ADSP2116x__ Present when running easmts -proc ADSP-2116x
with ADSP-2116x processor

__ADSP21261__ Present when running easmts -proc ADSP-21261
with ADSP-21261 processor

__ADSP21262__ Present when running easmts -proc ADSP-21262
with ADSP-21262 processor

__ADSP21266__ Present when running easmts -proc ADSP-21266
with ADSP-21266 processor

__ADSP21267__ Present when running easmts -proc ADSP-21267
with ADSP-21267 processor

__ADSP21363__ Present when running easmts -proc ADSP-21363
with ADSP-21363 processor

__ADSP21364__ Present when running easmts -proc ADSP-21364
with ADSP-21364 processor

__ADSP21365__ Present when running easmts -proc ADSP-21365
with ADSP-21365 processor

__ADSP21366__ Present when running easmts -proc ADSP-21366
with ADSP-21366 processor

__ADSP21367__ Present when running easmts -proc ADSP-21367
with ADSP-21367 processor

__ADSP21368__ Present when running easmts -proc ADSP-21368
with ADSP-21368 processor

__ADSP21369__ Present when running easmts -proc ADSP-21369
with ADSP-21369 processor

Table 2-2. SHARC Feature Preprocessor Macros (Cont’d)

Macro Definition

Preprocessor Guide

2-18 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Table 2-3. TigerSHARC Feature Preprocessor Macros

Macro Definition

__ADSPTS__ Always 1 for TigerSHARC processor tools

__ADSPTS101__ Equal 1 when used with ASDP-TS101 processor

__ADSPTS201__ Equal 1 when used with ASDP-TS201 processor

__ADSPTS202__ Equal 1 when used with ASDP-TS202 processor

__ADSPTS203__ Equal 1 when used with ASDP-TS203 processor

Table 2-4. Blackfin Feature Preprocessor Macros

Macro Definition

__ADSPBLACKFIN__ Always 1 for Blackfin processor tools

__ADSPBF522__ Present when running easmblkfn -proc ADSP-BF522
with ADSP-BF522 processor.

__ADSPBF523__ Present when running easmblkfn -proc ADSP-BF523
with ADSP-BF523 processor.

__ADSPBF524__ Present when running easmblkfn -proc ADSP-BF524
with ADSP-BF524 processor.

__ADSPBF525__ Present when running easmblkfn -proc ADSP-BF525
with ADSP-BF525 processor.

__ADSPBF526__ Present when running easmblkfn -proc ADSP-BF526
with ADSP-BF526 processor.

__ADSPBF527__ Present when running easmblkfn -proc ADSP-BF527
with ADSP-BF527 processor.

__ADSPBF532__
__ADSP21532__=1

Present when running easmblkfn -proc ADSP-BF532
with ADSP-BF532 processor.

__ADSPBF533__
__ADSP21533__=1

Present when running easmblkfn -proc ADSP-BF533
with ADSP-BF533 processor.

__ADSPBF534__
__ADSP21534__=1

Present when running easmblkfn -proc ADSP-BF534
with ADSP-BF534 processor.

__ADSPBF535__
__ADSP21535__=1

Present when running easmblkfn -proc ADSP-BF535
with ADSP-BF535 processor.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-19

Preprocessor

-D__VISUALDSPVERSION____ Predefined Macro (Preproces-
sor)

The -D__VISUALDSPVERSION__ predefined macro provides Visu-
alDSP++ product version information. The macro allows a pre-processing
check to be placed within code. It can be used to differentiate between
VisualDSP++ releases and updates. This macro applies to all Analog
Devices processors. The assemblers and linker predefine
-D__VISUALDSPVERSION__ in calls to the preprocessor.

__ADSPBF536__ Present when running easmblkfn -proc ADSP-BF536
with ADSP-BF536 processor.

__ADSPBF537__ Present when running easmblkfn -proc ADSP-BF537
with ADSP-BF537 processor.

__ADSPBF538__ Present when running easmblkfn -proc ADSP-BF538
with ADSP-BF538 processor.

__ADSPBF539__ Present when running easmblkfn -proc ADSP-BF539
with ADSP-BF539 processor.

__ADSPBF542__ Present when running easmblkfn -proc ADSP-BF542
with ADSP-BF542 processor.

__ADSPBF544__ Present when running easmblkfn -proc ADSP-BF544
with ADSP-BF544 processor.

__ADSPBF547__ Present when running easmblkfn -proc ADSP-BF547
with ADSP-BF547 processor.

__ADSPBF548__ Present when running easmblkfn -proc ADSP-BF548
with ADSP-BF548 processor.

__ADSPBF549__ Present when running easmblkfn -proc ADSP-BF549
with ADSP-BF549 processor.

__ADSPBF561__ Present when running easmblkfn -proc ADSP-BF561
with ADSP-BF561 processor.

Table 2-4. Blackfin Feature Preprocessor Macros (Cont’d)

Macro Definition

Preprocessor Guide

2-20 VisualDSP++ 5.0 Assembler and Preprocessor Manual

For further information on the product version encoding (including
parameters and examples), see “-D__VISUALDSPVERSION__ Pre-
defined Macro (Assembler)” on page 1-32.

Specifying Preprocessor Options
When developing a DSP project, it may be useful to modify the
preprocessor’s default options. Because the assembler, compiler, and
linker automatically run the preprocessor as your program is built (unless
you skip processing entirely), these project development tools can receive
input for the preprocessor program and direct its operation. The way the
preprocessor options are set depends on the environment used to run the
project development software.

You can specify preprocessor options from the preprocessor’s command
line or via the VisualDSP++ environment:

• From the operating system command line, select the preprocessor’s
command-line switches. For more information on these switches,
see “Preprocessor Command-Line Switches” on page 2-45.

• In the VisualDSP++ environment, select the preprocessor’s options
in the Assemble or Link pages of the Project Options dialog box,
accessible from the Project menu. Refer to “Specifying Assembler
Options in VisualDSP++” on page 1-168 for the Assemble page.

For more information, see the VisualDSP++ 5.0 User’s Guide and
VisualDSP++ online Help.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-21

Preprocessor

Preprocessor Command Reference
This section provides reference information about the processor’s prepro-
cessor commands and operators used in source code, including their
syntax and usage examples. It provides the summary and descriptions of
all preprocessor commands and operators.

The preprocessor reads code from a source file (.asm or .ldf), modifies it
according to preprocessor commands, and generates an altered prepro-
cessed source file. The preprocessed source file is an input file for the
assembler or linker; it is purged when a binary object file (.doj) is created.

Preprocessor command syntax must conform to these rules:

• Must be the first non-whitespace character on its line

• Cannot be more than one line in length unless the backslash
character (\) is inserted

• Cannot come from a macro expansion

The preprocessor operators are defined as special operators when used
in a #define command.

Preprocessor Commands and Operators
Table 2-5 lists preprocessor commands. Table 2-6 lists preprocessor
operators. Sections that begin on page 2-23 describe each of the prepro-
cessor commands and operators.

Table 2-5. Preprocessor Command Summary

Command/Operator Description

#define (on page 2-23) Defines a macro

#elif (on page 2-26) Subdivides an #if … #endif pair

Preprocessor Command Reference

2-22 VisualDSP++ 5.0 Assembler and Preprocessor Manual

#else (on page 2-27) Identifies alternative instructions within an #if … #endif pair

#endif (on page 2-28) Ends an #if … #endif pair

#error (on page 2-29) Reports an error message

#if (on page 2-30) Begins an #if … #endif pair

#ifdef (on page 2-31) Begins an #ifdef … #endif pair and tests if macro is defined

#ifndef (on page 2-32) Begins an #ifndef … #endif pair and tests if macro is not
defined

#include (on page 2-33) Includes contents of a file

#line (on page 2-35) Sets a line number during preprocessing

#pragma (on page 2-36) Takes any sequence of tokens

#undef (on page 2-37) Removes macro definition

#warning (on page 2-38) Reports a warning message

Table 2-6. Preprocessor Operator Summary

Command/Operator Description

(on page 2-39) Converts a macro argument into a string constant.
By default, this operator is OFF. Use the command-line switch
“-stringize” on page 2-53 to enable it.

(on page 2-41) Concatenates two tokens

? (on page 2-42) Generates unique labels for repeated macro expansions

... (on page 2-24) Specifies a variable-length argument list

Table 2-5. Preprocessor Command Summary

Command/Operator Description

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-23

Preprocessor

#define

The #define command defines macros.

When defining macros in your source code, the preprocessor substitutes
each occurrence of the macro with the defined text. Defining this type
of macro has the same effect as using the Find/Replace feature of a text
editor, although it does not replace literals in double quotation marks
(" ") and does not replace a match within a larger token.

For macro definitions longer than one line, place a backslash character (\)
at the end of each line (except the last line) for readability; refer to the
macro definition rules in “Writing Macros” on page 2-7.

You can add arguments to the macro definition. The arguments are sym-
bols separated by commas that appear within parentheses.

Syntax:

#define macroSymbol replacementText
#define macroSymbol[(arg1,arg2,…)] replacementText

where:

macroSymbol – macro identifying symbol

replacementText – text to substitute each occurrence of macroSymbol in
your source code

Preprocessor Command Reference

2-24 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Examples:

#define BUFFER_SIZE 1020

/* Defines a macro named BUFFER_SIZE and sets its

value to 1020. */

#define copy(src,dest)xr0=[J31+src];; \

[J31+dest] = xr0;;

/* define a macro named copy with two arguments.

The definition includes two instructions that copy

a word from memory to memory.

For example,

copy (0x3F,0xC0);

calls the macro, passing parameters to it.

The preprocessor replaces the macro with the code:

[xr0 = [j31+0x3F];;

[j31+0xC0] = xr0;;

*/

Variable-Length Argument Definitions

A macro can also be defined with a variable-length argument list
(by means of the ... operator).

#define test(a, ...) <definition>

For example, the code above defines a macro named test, which takes two
or more arguments. It is invoked like any other macro, although the
number of arguments can vary.

For example, in the macro definition, the __VA_ARGS__ identifier
is available to take on the value of all of the trailing arguments, including
the commas, all of which are merged to form a single item. See Table 2-7.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-25

Preprocessor

For example, the following code
#define test(a, ...) bar(a); testbar(__VA_ARGS__);
expands into:

test (1,2) -> bar(1); testbar(2);

test (1,2,3,4,5) -> bar(1); testbar(2,3,4,5);

Table 2-7. Sample Variable-Length Argument List

Sample Argument List Description

test(1) Error; the macro must have at least one more argument than
formal parameters, not counting “...”

test(1,2) Valid entry

test(1,2,3,4,5) Valid entry

Preprocessor Command Reference

2-26 VisualDSP++ 5.0 Assembler and Preprocessor Manual

#elif

The #elif command (else if) is used within an #if … #endif pair.
The #elif includes an alternative condition to test when the initial #if
condition evaluates as FALSE. The preprocessor tests each #elif condition
inside the pair and processes instructions that follow the first true #elif.
There can be an unlimited number of #elif commands inside one
#if … #end pair.

Syntax:

#elif condition

where:

condition – expression to evaluate as TRUE (nonzero) or FALSE (zero)

Example:

#if X == 1

...

#elif X == 2

...

/* The preprocessor includes text within the section

and excludes all other text before #else when X=2. */

#else

#endif

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-27

Preprocessor

#else

The #else command is used within an #if … #endif pair. It adds an
alternative instruction to the #if … #endif pair. Only one #else com-
mand can be used inside the pair. The preprocessor executes instructions
that follow #else after all the preceding conditions are evaluated as FALSE
(zero). If no #else text is specified, and all preceding #if and #elif
conditions are FALSE, the preprocessor does not include any text inside the
#if … #endif pair.

Syntax:

#else

Example:

#if X == 1

 ...
#elif X == 2

 ...
#else

...

/* The preprocessor includes text within the section

and excludes all other text before #else when

x!=1 and x!=2. */

#endif

Preprocessor Command Reference

2-28 VisualDSP++ 5.0 Assembler and Preprocessor Manual

#endif

The #endif command is required to terminate #if … #endif,
#ifdef … #endif, and #ifndef … #endif pairs. Ensure that the
number of #if commands matches the number of #endif commands.

Syntax:

#endif

Example:

#if condition

...

...

#endif

/* The preprocessor includes text within the section only

if the test is true */

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-29

Preprocessor

#error

The #error command causes the preprocessor to raise an error. The
preprocessor uses the text following the #error command as the error
message.

Syntax:

#error messageText

where:

messageText – user-defined text

To break a long messageText without changing its meaning, place a back-
slash character (\) at the end of each line (except the last line).

Example:

#ifndef __ADSPBF535__

#error \

MyError: \

Expecting a ADSP-BF535. \

Check the Linker Description File!

#endif

Preprocessor Command Reference

2-30 VisualDSP++ 5.0 Assembler and Preprocessor Manual

#if

The #if command begins an #if … #endif pair. Statements inside an
#if … #endif pair can include other preprocessor commands and condi-
tional expressions. The preprocessor processes instructions inside the
#if … #endif pair only when condition that follows the #if evaluates
as TRUE. Every #if command must terminated with an #endif command.

Syntax:

#if condition

where:

condition – expression to evaluate as TRUE (nonzero) or FALSE (zero)

Example:

#if x!=100 /* test for TRUE condition */

…

/* The preprocessor includes text within the section

if the test is true. */

#endif

More examples:

#if (x!=100) && (y==20)

#if defined(__ADSPBF535__)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-31

Preprocessor

#ifdef

The #ifdef (if defined) command begins an #ifdef … #endif pair and
instructs the preprocessor to test whether the macro is defined. Each
#ifdef command must have a matching #endif command.

Syntax:

#ifdef macroSymbol

where:

macroSymbol – macro identifying symbol

Example:

#ifdef __ADSPBF535__

/* Includes text after #ifdef only when __ADSPBF535__ has

been defined */

#endif

Preprocessor Command Reference

2-32 VisualDSP++ 5.0 Assembler and Preprocessor Manual

#ifndef

The #ifndef (if not defined) command begins an #ifndef … #endif
pair and directs the preprocessor to test for an undefined macro. The
preprocessor considers a macro undefined if it has no defined value.
Each #ifndef command must have a matching #endif command.

Syntax:

#ifndef macroSymbol

where:

macroSymbol – macro identifying symbol

Example:

#ifndef __ADSPBF535__

/* Includes text after #ifndef only when __ADSPBF535__

is not defined */

#endif

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-33

Preprocessor

#include

The #include command directs the preprocessor to insert the text from a
header file at the command location. There are two types of header files:
system and user. However, the #include command may be presented in
three forms:

• #include <filename> – used with system header files

• #include "filename" – used with user header files

• #include text – used with a sequence of tokens
The sequence of tokens is subject to macro expansion by the pre-
processor. After macro expansion, the text must match one of the
header file forms.

The only difference to the preprocessor between the two types of header
files is the way the preprocessor searches for them.

• System Header File <fileName> – The preprocessor searches for a
system header file in this order: (1) the directories you specify, and
(2) the standard list of system directories.

• User Header File “fileName” – The preprocessor searches for a user
header file in this order:

1. Current directory – the directory where the source file that
has the #include command(s) lives

2. Directories you specify

3. Standard list of system directories

Refer to “Header Files and the #include Command” on page 2-4
for more information.

Preprocessor Command Reference

2-34 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Syntax:

#include <fileName> // include a system header file

#include "fileName" // include a user header file

#include macroFileNameExpansion

/* Include a file named through macro expansion.

This command directs the preprocessor to expand the

macro. The preprocessor processes the expanded text,

which must match either <fileName> or "fileName". */

Example:

#ifdef __ADSPBF535__

/* Tests that __ADSPBF535__ has been defined */

#include <stdlib.h>

#endif

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-35

Preprocessor

#line

The #line command directs the preprocessor to set the internal line
counter to the specified value. Use this command for error tracking
purposes.

Syntax:

#line lineNumber “sourceFile”

where:

lineNumber – line number of the source line

sourceFile – name of the source file included in double quotation marks.
The sourceFile entry can include the drive, directory, and file extension
as part of the file name.

Example:

#line 7 "myFile.c"

All assembly programs have #line directives after preprocessing.
They always have a first line with #line 1 "filename.asm" and
they will also have #line directives to establish correct line num-
bers for text that came from include files as a result of the processed
#include directives.

Preprocessor Command Reference

2-36 VisualDSP++ 5.0 Assembler and Preprocessor Manual

#pragma

The #pragma command is the implementation-specific command that
modifies the preprocessor behavior. The #pragma command can take any
sequence of tokens. This command is accepted for compatibility with
other VisualDSP++ software tools. The pp preprocessor currently does not
support any pragmas; therefore, it ignores any information in the #pragma
command.

Syntax:

#pragma any_sequence_of_tokens

Example:

#pragma disable_warning 1024

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-37

Preprocessor

#undef

The #undef command directs the preprocessor to undefine a macro.

Syntax:

#undef macroSymbol

where:

macroSymbol – macro created with the #define command

Example:

#undef BUFFER_SIZE /* undefines a macro named BUFFER_SIZE */

Preprocessor Command Reference

2-38 VisualDSP++ 5.0 Assembler and Preprocessor Manual

#warning

The #warning command causes the preprocessor to issue a warning.
The preprocessor uses the text following the #warning command as the
warning message.

Syntax:

#warning messageText

where:

messageText – user-defined text

To break a long messageText without changing its meaning, place a
backslash character (\) at the end of each line (except the last line).

Example:

#ifndef __ADSPBF535__

#warning \

MyWarning: \

Expecting a ADSPBF535. \

Check the Linker Description File!

#endif

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-39

Preprocessor

(Argument)

The # (argument) “stringization” operator directs the preprocessor to con-
vert a macro argument into a string constant. The preprocessor converts
an argument into a string when macro arguments are substituted into the
macro definition.

The preprocessor handles white space in string-to-literal conversions by:

• Ignoring leading and trailing white spaces

• Converting white space in the middle of the text to a single space
in the resulting string

Syntax:

toString

where:

toString – macro formal parameter to convert into a literal string.
The # operator must precede a macro parameter. The preprocessor
includes a converted string within double quotation marks (" ").

This feature is off by default. Use the “-stringize” command-line
switch (on page 2-53) to enable it.

C Code Example:

#define WARN_IF(EXP)\

fprintf (stderr,"Warning:"#EXP "/n")

/* Defines a macro that takes an argument and converts

the argument to a string */

WARN_IF(current <minimum);

/* Invokes the macro passing the condition. */

fprintf (stderr,"Warning:""current <minimum""/n");

Preprocessor Command Reference

2-40 VisualDSP++ 5.0 Assembler and Preprocessor Manual

/* Note that the #EXP has been changed to current <minimum

and is enclosed in " " */

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-41

Preprocessor

(Concatenate)

The ## (concatenate) operator directs the preprocessor to concatenate two
tokens. When you define a macro, you request concatenation with ## in
the macro body. The preprocessor concatenates the syntactic tokens on
either side of the concatenation operator.

Syntax:

token1##token2

Example:

#define varstring(name) .VAR var_##name[] = {‘name’, 0};

varstring (error);

varstring (warning);

/* The above code results in */

.VAR var_error[] = {‘error’, 0};

.VAR var_warning[] = {‘warning’, 0};

Preprocessor Command Reference

2-42 VisualDSP++ 5.0 Assembler and Preprocessor Manual

? (Generate a unique label)

The “?” operator directs the preprocessor to generate unique labels for
iterated macro expansions. Within the definition body of a macro
(#define), you can specify one or more identifiers with a trailing question
mark (?) to ensure that unique label names are generated for each macro
invocation.

The preprocessor affixes “_num” to a label symbol, where num is a uniquely
generated number for every macro expansion. For example:

abcd? ===> abcd_1

If a question mark is a part of the symbol that needs to be preserved,
ensure that “?” is delimited from the symbol. For example, “abcd?” is a
generated label, and “abcd ?” is not.

Example:

#define loop(x,y) mylabel?:x =1+1;/

x = 2+2;/

yourlabel?:y =3*3;/

y = 5*5;/

JUMP mylabel?;/

JUMP yourlabel?;

loop (bz,kjb)

loop (lt,ss)

loop (yc,jl)

// Generates the following output:

mylabel_1:bz =1+1;bz =2+2;yourlabel_1:kjb =3*3;kjb = 5*5;

JUMP mylabel_1;

JUMP yourlabel_1;

mylabel_2:lt =1+1;lt =2+2;yourlabel_2:ss =3*3;ss =5*5;

JUMP mylabel_2;

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-43

Preprocessor

JUMP yourlabel_2;

mylabel_3:yc =1+1;yc =2+2;yourlabel_3:Jl =3*3;Jl =5*5;

JUMP mylabel_3;

JUMP yourlabel_3;

The last numeric suffix used to generate unique labels is maintained by the
preprocessor and is available through a preprocessor predefined macro
__LastSuffix__ (see on page 2-16). This value can be used to generate
references to labels in the last macro expansion.

The following example assumes the macro “loop” from the previous
example.

// Some macros for appending a suffix to a label

#define makelab(a, b) a##b

#define Attach(a, b) makelab(a##_, b)

#define LastLabel(foo) Attach(foo, __LastSuffix__)

// jump back to label in the previous expansion

JUMP LastLabel(mylabel);

The above expands to (the last macro expansion had a suffix of 3):

JUMP mylabel_3;

Preprocessor Command-Line Reference

2-44 VisualDSP++ 5.0 Assembler and Preprocessor Manual

Preprocessor Command-Line Reference
The pp preprocessor is the first step in the process of building (assembling,
compiling, and linking) your programs. The pp preprocessor is run before
the assembler and linker, using the assembler or linker as the command-
line tool. You can also run the preprocessor independently from its own
command line.

This section contains:

• “Running the Preprocessor”

• “Preprocessor Command-Line Switches” on page 2-45

Running the Preprocessor
To run the preprocessor from the command line, type the name of the
program followed by arguments in any order.

pp [-switch1 [-switch2 …]] [sourceFile]

Table 2-8 summarizes these arguments.

Table 2-8. Preprocessor Command Line Argument Summary

Argument Description

pp Name of the preprocessor program

-switch Switch (or switches) to process. The preprocessor offers several switches that
are used to select its operation and modes. Some preprocessor switches take a
file name as a required parameter.

sourceFile Name of the source file to process. The preprocessor supports relative path
names and absolute path names. The pp.exe outputs a list of command-line
switches when runs without this argument.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-45

Preprocessor

For example, the following command line

pp -Dfilter_taps=100 -v -o bin/p1.is p1.asm

runs the preprocessor with:

-Dfilter_taps=100 – defines the macro filter_taps as equal to
100

-v – displays verbose information for each phase of the
preprocessing

-o bin\p1.is – specifies the name and directory for the
intermediate preprocessed file

p1.asm – specifies the assembly source file to preprocess

Most switches without arguments can be negated by prefixing
-no to the switch. For example, -nowarn turns off warning
messages, and -nocs! turns off omitting “!” style comments.

Preprocessor Command-Line Switches
The preprocessor is controlled through the switches (or VisualDSP++
options) of other DSP development tools, such as the compiler, assembler,
and linker. Note that the preprocessor (pp.exe) can operate independently
from the command line with its own command-line switches.

Table 2-9 lists pp.exe switches. A detailed description of each switch
appears beginning on page 2-47.

Table 2-9. Preprocessor Command-Line Switch Summary

Switch Name Description

-cpredef
on page 2-47

Enables the “stringization” operator and provides
C compiler-style preprocessor behavior

Preprocessor Command-Line Reference

2-46 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-cs!
on page 2-48

Treats as a comment all text after “!” on a single line

-cs/*
on page 2-48

Treats as a comment all text within /* */

-cs//
on page 2-49

Treats as a comment all text after //

-cs{
on page 2-49

Treats as a comment all text within { }

-csall
on page 2-49

Accepts comments in all formats

–Dmacro[=definition]
on page 2-49

Defines macro

-h[elp]
on page 2-49

Outputs a list of command-line switches

–i
on page 2-50

Outputs only makefile dependencies for include files speci-
fied in double quotes

–i|Idirectory
on page 2-50

Searches directory for included files

–l
on page 2-51

Indicates where to start searching for system include files,
which are delimited by < >

-M
on page 2-52

Makes dependencies only

-MM
on page 2-52

Makes dependencies and produces preprocessor output

-Mo filename
on page 2-52

Specifies filename for the make dependencies output file

-Mt filename
on page 2-53

Makes dependencies for the specified source file

–o filename
on page 2-53

Outputs named object file

–stringize
on page 2-53

Enables stringization (includes a string in double quotes)

Table 2-9. Preprocessor Command-Line Switch Summary (Cont’d)

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-47

Preprocessor

The following sections describe preprocessor command-line switches.

-cpredef

The -cpredef switch directs the preprocessor to produce C compiler-style
strings in all cases. By default, the preprocessor produces assembler-style
strings within single quotes (for example, ‘string’) unless the -cpredef
switch is used.

The -cpredef switch sets the following C compiler-style behaviors:

• Directs the preprocessor to use double quotation marks rather than
the default single quotes as string delimiters for any preprocessor-
generated strings. The preprocessor generates strings for predefined

–tokenize-dot
(on page 2-53)

Treats “.” (dot) as an operator when parsing identifiers

–Uname
on page 2-54

Undefines a macro on the command line

–v[erbose]
on page 2-54

Displays information about each preprocessing phase

–version
on page 2-54

Displays version information for the preprocessor

-w
on page 2-54

Removes all preprocessor-generated warnings

-Wnumber
on page 2-55

Suppresses any report of the specified warning

-warn
on page 2-55

Prints warning messages (default)

Table 2-9. Preprocessor Command-Line Switch Summary (Cont’d)

Preprocessor Command-Line Reference

2-48 VisualDSP++ 5.0 Assembler and Preprocessor Manual

macros that are expressed as string constants, and as a result of the
stringize operator in macro definitions (see Table 2-1 on page 2-16
for the predefined macros).

• Enables the stringize operator (#) in macro definitions. By default,
the stringize operator is disabled to avoid conflicts with constant
definitions (see “-stringize” on page 2-53).

• Parses identifiers using C language rules instead of assembler rules.
In C, the character “.” is an operator and is not considered part
of an identifier. In the assembler, the “.” is considered part of a
directive or label. With -cpredef, the preprocessor treats “.”
as an operator.

The following example shows the difference in effect of the two styles.

#define end last

// what label.end looks like with -cpredef

label.last // "end" parsed as ident and macro expanded

// what label.end looks like without -cpredef (asm rules)

label.end // "end" not parsed separately

-cs!

The -cs! switch directs the preprocessor to treat as a comment all text
after “!” on a single line.

-cs/*

The -cs/* switch directs the preprocessor to treat as a comment all text
within /* */ on multiple lines.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-49

Preprocessor

-cs//

The -cs// switch directs the preprocessor to treat as a comment all text
after // on a single line.

-cs{

The -cs{ switch directs the preprocessor to treat as a comment all text
within { } on multiple lines..

-csall

The -csall switch directs the preprocessor to accept comments in all
formats.

-Dmacro[=def]

The -Dmacro switch directs the preprocessor to define a macro. If you do
not include the optional definition string (=def), the preprocessor defines
the macro as value 1. Similar to the C compiler, you can use the -D switch
to define an assembly language constant macro.

Some examples of this switch are:

-Dinput // defines input as 1

–Dsamples=10 // defines samples as 10

–Dpoint="Start" // defines point as "Start"

–D_LANGUAGE_ASM=1 // defines _LANGUAGE_ASM as 1

-h[elp]

The -h (or -help) switch directs the preprocessor to send to standard
output the list of command-line switches with a syntax summary.

Preprocessor Command-Line Reference

2-50 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-i

The -i (less includes) switch may be used with the -M or -MM switches to
direct the preprocessor to not output dependencies on any system files.
System files are any files that are brought in using #include < >. Files
included using #include " " (double quote characters) are included in the
dependency list.

-i

The -idirectory (or -Idirectory) switch direct the preprocessor
to append the specified directory (or a list of directories separated
by semicolons) to the search path for included header files
(see on page 2-33).

 No space is allowed between -i and the path name.

The preprocessor searches for included files delimited by double quotation
marks (" ") in this order:

1. The source directory (that is, the directory in which the original
source file resides)

2. The directories in the search path supplied by the -I switch. If
more than one directory is supplied by the -I switch, they are
searched in the order that they appear on the command line.

3. The system directory (that is, the .../include subdirectory of the
VisualDSP++ installation directory)

The current directory is the directory where the source file lives,
not the directory of the assembler program. Usage of full path
names for the -I switch on the command line (omitting the disk
partition) is recommended.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-51

Preprocessor

The preprocessor searches for included files delimited by < > in this order:

1. The directories in the search path supplied by the -I switch (sub-
ject to modification by the -I- switch, as shown in “-I-” on
page 2-51. If more than one directory is supplied by the -I switch,
the directories are searched in the order that they appear on the
command line.

2. The system directory (that is, the ...\include subdirectory of the
VisualDSP++ installation directory.

-I-

The -I- switch indicates where to start searching for system include files,
which are delimited by < >. If there are several directories in the search
path, the -I- switch indicates where in the path the search for system
include files begins.

For example:

pp -Idir1 -Idir2 -I- -Idir3 -Idir4 myfile.asm

When searching for #include "inc1.h" the preprocessor searches in the
source directory, then dir1, dir2, dir3, and dir4 in that order.

When searching for #include <inc2.h> the preprocessor searches for the
file in dir3 and then dir4. The -I- switch marks the point where the
system search path starts.

Preprocessor Command-Line Reference

2-52 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-M

The -M switch directs the preprocessor to output a rule (generate make
rule only) suitable for the make utility, describing the dependencies of the
source file. The output, a make dependencies list, is written to stdout in
the standard command-line format.

“target_file”: “dependency_file.ext”

where:

dependency_file.ext may be an assembly source file or a header file
included with the #include preprocessor command

When the “-o filename” switch is used with -M , the -o option is ignored.
To specify an alternate target name for the make dependencies, use the
“-Mt filename” option. To direct the make dependencies to a file, use the
“-Mo filename” option.

-MM

The -MM switch directs the preprocessor to output a rule (generate make
rule and preprocess) suitable for the make utility, describing the depen-
dencies of the source file. The output, a make dependencies list, is written
to stdout in the standard command-line format.

The only difference between -MM and -M actions is that the preprocessing
continues with -MM. See “-M” for more information.

-Mo filename

The -Mo switch specifies the name of the make dependencies file (output
make rule) that the preprocessor generates when using the -M or -MM
switch. The switch overrides default of make dependencies to stdout.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-53

Preprocessor

-Mt filename

The -Mt switch specifies the name of the target file (output make rule for
the named source) for which the preprocessor generates the make rule
using the -M or -MM switch. The -Mt fileneme switch overrides the default
filename.is file. See “-M” for more information.

-o filename

The -o switch directs the preprocessor to use (output) the specified
filename argument for the preprocessed assembly file. The preprocessor
directs the output to stdout when no -o option is specified.

-stringize

The -stringize switch enables the preprocessor stringization operator.
By default, this switch is off. When set, this switch turns on the preproces-
sor stringization functionality (see “# (Argument)” on page 2-39) which,
by default, is turned off to avoid possible undesired stringization.

For example, there is a conflict between the stringization operator and the
assembler’s boolean constant format in the following macro definition:

#define bool_const b#00000001

-tokenize-dot

The -tokenize-dot switch parses identifiers using C language rules
instead of assembler rules, without the need of other C semantics
(see “-cpredef” on page 2-47 for more information).

When the -tokenize-dot switch is used, the preprocessor treats “.” as an
operator and not as part of an identifier. If the -notokenize-dot switch is
used, it returns the preprocessor to the default behavior. The only benefit

Preprocessor Command-Line Reference

2-54 VisualDSP++ 5.0 Assembler and Preprocessor Manual

to the negative version is that if it appears on the command line after the
-cpredef switch, it can turn off the behavior of “.” without affecting
other C semantics.

-Uname

The -Uname switch directs the preprocessor to undefine a macro on the
command line. The “undefine macro” switch applies only to macros
defined on the same command line. The functionality provides a way for
users to undefine feature macros specified by the assembler or linker.

-v[erbose]

The -v[erbose] switch directs the preprocessor to output the version of
the preprocessor program and information for each phase of the
preprocessing.

-version

The -version switch directs the preprocessor to display version
information for the preprocessor program.

The -version switch on the assembler command line provides
version information for both the assembler and preprocessor.
The -version switch on the preprocessor command line provides
preprocessor version information only.

-w

The -w (disable all warnings) switch directs the assembler not to display
warning messages generated during assembly. Note that -w has the same
effect as the -nowarn switch.

VisualDSP++ 5.0 Assembler and Preprocessor Manual 2-55

Preprocessor

-Wnumber

The -Wnumber (warning suppression) switch selectively disables warnings
specified by one or more message numbers. For example, -W74 disables
warning message pp0074.

-warn

The -warn switch generates (prints) warning messages (this switch is on by
default). The -nowarn switch negates this action.

Preprocessor Command-Line Reference

2-56 VisualDSP++ 5.0 Assembler and Preprocessor Manual

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-1

I INDEX

Symbols
? preprocessor operator, 2-42

Numerics
1.0r fract, 1-61
1.15 fract, 1-59, 1-60
1.31 fract, 1-60
1.31 fracts, 1-80
32-bit initialization

used with 1.31 fracts, 1-80

A
absolute address, 1-66
address alignment, 1-74
ADDRESS () assembler operator, 1-55
ADI macro, 2-16
__ADSP21000__ macro, 2-16
__ADSP21020__ macro, 2-16
__ADSP21060__ macro, 2-16
__ADSP21061__ macro, 2-16
__ADSP21062__ macro, 2-16
__ADSP21065L__ macro, 2-16
__ADSP2106x__ macro, 2-17
__ADSP21160__ macro, 2-16
__ADSP21161__ macro, 2-17
__ADSP2116x__ macro, 2-17
__ADSP21261__ macro, 2-17
__ADSP21262__ macro, 2-17
__ADSP21266__ macro, 2-17
__ADSP21267__ macro, 2-17

__ADSP21363__ macro, 2-17
__ADSP21364__ macro, 2-17
__ADSP21365__ macro, 2-17
__ADSP21367__ macro, 2-17
__ADSP21368__ macro, 2-17
__ADSP21369__ macro, 2-17
__ADSPBF522__ macro, 2-18
__ADSPBF523__ macro, 2-18
__ADSPBF524__ macro, 2-18
__ADSPBF525__ macro, 2-18
__ADSPBF526__ macro, 2-18
__ADSPBF527__ macro, 2-18
__ADSPBF532__ macro, 2-18
__ADSPBF533__ macro, 2-18
__ADSPBF534__ macro, 2-18
__ADSPBF535__ macro, 2-18
__ADSPBF536__ macro, 2-19
__ADSPBF537__ macro, 2-19
__ADSPBF538__ macro, 2-19
__ADSPBF539__ macro, 2-19
__ADSPBF542__ macro, 2-19
__ADSPBF544__ macro, 2-19
__ADSPBF547__ macro, 2-19
__ADSPBF548__ macro, 2-19
__ADSPBF549__ macro, 2-19
__ADSPBF561__ macro, 2-19
__ADSPBLACKFIN__ macro, 2-18
__ADSPTS101__ macro, 2-18
__ADSPTS201__ macro, 2-18
__ADSPTS202__ macro, 2-18
__ADSPTS203__ macro, 2-18
__ADSPTS__ macro, 2-18

INDEX

I-2 VisualDSP++ 5.0 Assembler and Preprocessor Manual

.ALIGN (address alignment) assembler
directive, 1-74

-align-branch-lines assembler switch, 1-148
.ALIGN_CODE (code address alignment)

assembler directive, 1-76
aligning branch instructions, 1-148
-anomaly-detect assembler switch, 1-149,

1-161
-anomaly-warn assembler switch, 1-149
anomaly warnings, displaying, 1-149,

1-150, 1-161
-anomaly-workaround assembler switch,

1-150
archiver, object file input to, 1-4
arithmetic

fractional, 1-61
mixed fractional, 1-61

ASCII
string directive, 1-78
string initialization, 1-81, 1-116, 1-138

.ASCII assembler directive, 1-69, 1-78

.asm files, 1-3

assembler
Blackfin feature macros, 1-28
command-line syntax, 1-142
debugging syntax errors, 2-13
directive syntax, 1-7, 1-69
expressions, constant and address, 1-52
file extensions, 1-143
instruction set, 1-6
keywords, 1-39, 1-43, 1-47
numeric bases, 1-58
operators, 1-54
overview, 1-3
predefined macros, 1-27, 1-28
producing code suitable for the specified

processor, 1-163
program content, 1-6
running from command line, 1-142
run-time environment, 1-2
SHARC feature macros, 1-27
source files (.ASM), 1-4
special operators, 1-54
symbols, 1-50
TigerSHARC feature macros, 1-28

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-3

INDEX

assembler directives
.ALIGN, 1-74
.ALIGN_CODE, 1-76
.ASCII, 1-78
.BSS, 1-69
.BYTE/.BYTE2/.BYTE4, 1-79
conditional, 1-62
.DATA, 1-70
.EXTERN, 1-83
.EXTERN STRUCT, 1-84
.FILE_ATTR, 1-87
.FILE (override filename), 1-86
.GLOBAL, 1-88
.GLOBL, 1-70
.IMPORT, 1-90
.INCBIN, 1-71
.INC/BINARY, 1-93
.LEFTMARGIN, 1-94
.LIST, 1-95
.LIST_DATA, 1-96
.LIST_DATFILE, 1-97
.LIST_DEFTAB, 1-98
.LIST_LOCTAB, 1-100
.LIST_WRAPDATA, 1-101
.LONG, 1-102
.MESSAGE, 1-103
.NEWPAGE, 1-107, 1-118
.NOLIST, 1-95
.NOLIST_DATA, 1-96
.NOLIST_DATFILE, 1-97
.NOLIST_WRAPDATA, 1-101
.PAGELENGTH, 1-108
.PAGEWIDTH, 1-109
.PORT, 1-111, 1-118
.PRECISION, 1-112
.PREVIOUS, 1-114
.PRIORITY, 1-115
.ROUND_MINUS, 1-119
.ROUND_NEAREST, 1-119
.ROUND_PLUS, 1-119

.ROUND_ZERO, 1-119

.SECTION, 1-122

.SEGMENT/.ENDSEG, 1-128

.SEPARATE_MEM_SEGMENTS,
1-128, 1-129

.SET, 1-73

.SHORT, 1-129

.SHORT EXPRESSION-LIST, 1-73

.STRUCT, 1-130

.TEXT, 1-73

.TYPE, 1-134

.VAR, 1-135

.WEAK, 1-140

INDEX

I-4 VisualDSP++ 5.0 Assembler and Preprocessor Manual

assembler switches
-align-branch-lines, 1-148
-anomaly-detect, 1-149, 1-161
-anomaly-warn, 1-149
-anomaly-workaround, 1-150
-char-size-32, 1-150
-char-size-8, 1-150
-char-size-any, 1-151
-D (define macro), 1-151
-D (defines) option for the

-flags-compiler switch, 1-154
-default-branch-np, 1-151
-default-branch-p, 1-151
-double-size-32, 1-152
-double-size-64, 1-152
-double-size-any, 1-153
-expand-symbolic-links, 1-153
-expand-windows-shortcuts, 1-153
-flags-compiler, 1-153
-flags-pp, 1-155
-g (generate debug info), 1-156
-h (help), 1-157
-i (include directory path), 1-157
-I (include search path) option for the

-flags-compiler switch, 1-155
-li (listing with include), 1-159
-l (named listing file), 1-158
-micaswarn, 1-160
-M (make rule only), 1-159
-MM (generate make rule and assemble),

1-159
-Mo (output make rule), 1-160
-Mt (output make rule for named

object), 1-160
--no-anomaly-workaround, 1-161
-no-expand-symbolic-links, 1-161
-no-expand-windows-shortcuts, 1-162
-no-source-dependency, 1-160
-no-temp-data-file, 1-162
-o (output), 1-162

-pp (proceed with preprocessing), 1-163
-proc processor, 1-163
-save-temps (save intermediate files),

1-164
-si-revision version (silicon revision),

1-164
-sp (skip preprocessing), 1-165
-stallcheck, 1-165
-version (display version), 1-165
-v (verbose), 1-165
-Werror number, 1-166
-Winfo number (informational

messages), 1-166
-Wno-info (no informational messages),

1-166
-Wnumber (warning suppression), 1-166
-w (skip warning messages), 1-166
-Wsuppress number, 1-167
-Wwarn-error, 1-167
-Wwarn number, 1-167

assembly code, embedding (inline) in
C/C++ program, 1-21

assembly language constant, 2-49
assembly language programs, writing, 1-4
attributes, creating in object files, 1-87

B
backslash character, 2-23
binary files, including, 1-71
BITPOS() assembler operator, 1-55, 1-56
block initialization section qualifiers, 1-125
branch

instructions, 1-148, 1-151
target buffer, 1-151

branch lines default to NP, 1-151
.BSS assembler directive, 1-69
built-in functions

OFFSETOF, 1-63, 1-65
SIZEOF, 1-63, 1-65

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-5

INDEX

.BYTE4/R32 assembler directive, for 32-bit
initialization, 1-80

.BYTE/ .BYTE2/ .BYTE4 assember
directives, 1-79

C
C/C++ run-time library, initializing, 1-126
CHAR32 section qualifier, 1-124
CHAR8 section qualifier, 1-124
CHARANY section qualifier, 1-124
-char-size-32 assembler switch, 1-150
-char-size-8 assembler switch, 1-150
-char-size-any assembler switch, 1-151
circular buffers, setting, 1-56, 1-57
comma-separated options, 1-155
(concatenate) preprocessor operator,

2-41
concatenate (##) preprocessor operator,

2-41
conditional assembly directives

.ELIF, 1-62

.ELSE, 1-62

.ENDIF, 1-62

.IF, 1-62
constant expressions, 1-52
conventions

comment strings, 1-62
file extensions, 1-143
file names, 1-143
numeric formats, 1-58
user-defined symbols, 1-50

-cpredef (C-style definitions) preprocessor
switch, 2-48

-cpredef (C style) preprocessor switch, 2-47
C programs

interfacing assembly, 1-21
C++ programs

interfacing assembly, 1-21
-csall (all comment styles) preprocessor

switch, 2-49

-cs! (! comment style) preprocessor switch,
2-48

-cs/* (/* */ comment style) preprocessor
switch, 2-48

-cs// (// comment style) preprocessor
switch, 2-49

-cs{ ({ } comment style) preprocessor
switch, 2-49

C structs, in assembly source, 1-22
customer support, -xv
custom processors, 1-163

D
-D__2102x__ macro, 1-27
-D__2106x__ macro, 1-27
-D__2116x__ macro, 1-27
-D__2126x__ macro, 1-27, 1-28
-D__2136x__ macro, 1-28
-D__2636x__ macro, 1-28
-D__ADSP21000__ macro, 1-27
-D__ADSP21020__ macro, 1-27
-D__ADSP2116x__ macro, 1-27
-D__ADSP2126x__ macro, 1-28
-D__ADSP21371__ macro, 1-28
-D__ADSP21375__ macro, 1-28
-D__ADSP2137x__ macro, 1-28
-D__ADSPBF512__ macro, 1-30
-D__ADSPBF514__ macro, 1-30
-D__ADSPBF516__ macro, 1-30
-D__ADSPBF51x__ macro, 1-29
-D__ADSPBF522__ macro, 1-30
-D__ADSPBF523__ macro, 1-30
-D__ADSPBF524__ macro, 1-30
-D__ADSPBF525__ macro, 1-30
-D__ADSPBF526__ macro, 1-30
-D__ADSPBF527__ macro, 1-30
-D__ADSPBF52x__ macro, 1-29
-D__ADSPBF531__ macro, 1-30
-D__ADSPBF532__ macro, 1-30
-D__ADSPBF533__ macro, 1-30

INDEX

I-6 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-D__ADSPBF534__ macro, 1-30
-D__ADSPBF535__ macro, 1-31
-D__ADSPBF536__ macro, 1-31
-D__ADSPBF537__ macro, 1-31
-D__ADSPBF538__ macro, 1-31
-D__ADSPBF539__ macro, 1-31
-D__ADSPBF542__ macro, 1-31
-D__ADSPBF544__ macro, 1-31
-D__ADSPBF547__ macro, 1-31
-D__ADSPBF548__ macro, 1-31
-D__ADSPBF549__ macro, 1-31
-D__ADSPBF54x__ macro, 1-30
-D__ADSPBF561__ macro, 1-31
-D__ADSPBLACKFIN__ macro, 1-29
-D__ADSPLPBLACKFIN__ macro, 1-29
-D__ADSPTS101__ macro, 1-29
-D__ADSPTS201__ macro, 1-29
-D__ADSPTS202__ macro, 1-29
-D__ADSPTS203__ macro, 1-29
-D__ADSPTS20x__ macro, 1-29
-D__ADSPTS__ macro, 1-29
DATA64 (64-bit word section) qualifier,

1-125
.DATA assembler directive, 1-70
__DATE__ macro, 2-16
.dat files, 1-3, 1-143
-D (define macro) assembler switch, 1-151
-D (define macro) preprocessor switch,

2-49
-D (defines) command-line option,

see-flags-compiler switch
debugging

assembler syntax errors, 2-13
information, generating, 1-156
tips for macros, 2-14

-default-branch-np assembler switch, 1-151
-default-branch-p assembler switch, 1-151
#define (macro) preprocessor command,

2-9, 2-23
defines (-D) options, 1-154

defining macros, 2-9, 2-23
dependencies, from buffer initializations,

1-34
directives, assembler, 1-69
-D_LANGUAGE_ASM macro, 1-27,

1-29, 2-16
-D_LANGUAGE_C macro, 1-31, 2-16
.dlb files, 1-4
DMAONLY section qualifier, 1-125
DM (data), 40-bit word section qualifier,

1-125
.doj files, 1-3, 1-4
DOUBLE32 section qualifier, 1-123
DOUBLE64 section qualifier, 1-123
DOUBLEANY section qualifier, 1-123
-double-size-32 assembler switch, 1-152
-double-size-64 assembler switch, 1-152
-double-size-any assembler switch, 1-153
DWARF2 function information, 1-156

E
easm21k assembler driver, 1-2
easmblkfn assembler driver, 1-2
easmts assembler driver, 1-2
ELF.h header file, 1-123
ELF section types, 1-123
.ELIF conditional assembly directive, 1-62
#elif (else if) preprocessor command, 2-26
#else (alternate instruction) preprocessor

command, 2-27
.ELSE conditional assembly directive, 1-62
.ENDIF conditional assembly directive,

1-62
#endif (termination) preprocessor

command, 2-28
end labels

marking ending function boundaries,
1-36

missing, 1-156
end of a function, 1-156

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-7

INDEX

.ENDSEG assembler directive, 1-128
#error (error message) preprocessor

command, 2-29
-expand-symbolic-links assembler switch,

1-153
-expand-windows-shortucts assembler

switch, 1-153

expressions
address, 1-52
constant, 1-52

.EXTERN (global label) assembler
directive, 1-83

.EXTERN STRUCT assembler directive,
1-84

INDEX

I-8 VisualDSP++ 5.0 Assembler and Preprocessor Manual

F
feature assembler macros

-D__ADSP21000__, 1-27
-D__ADSP21020__, 1-27
-D__ADSP21060__, 1-27
-D__ADSP21061__, 1-27
-D__ADSP21062__, 1-27
-D__ADSP21065L__, 1-27
-D__ADSP21160__, 1-27
-D__ADSP21161__, 1-27
-D__ADSP21261__, 1-27
-D__ADSP21262__, 1-27
-D__ADSP21266__, 1-28
-D__ADSP21267__, 1-28
-D__ADSP21363__, 1-28
-D__ADSP21364__, 1-28
-D__ADSP21365__, 1-28
-D__ADSP21366__, 1-28
-D__ADSP21367__, 1-28
-D__ADSP21368__, 1-28
-D__ADSP21369__, 1-28
-D__ADSP21371__, 1-28
-D__ADSP21375__, 1-28
-D__ADSP2137x__, 1-28
-D__ADSPBF512__, 1-30
-D__ADSPBF514__, 1-30
-D__ADSPBF516__, 1-30
-D__ADSPBF51x__, 1-29
-D__ADSPBF522__, 1-30
-D__ADSPBF523__, 1-30
-D__ADSPBF524__, 1-30
-D__ADSPBF525__, 1-30
-D__ADSPBF526__, 1-30
-D__ADSPBF527__, 1-30
-D__ADSPBF52x__, 1-29
-D__ADSPBF531__, 1-30
-D__ADSPBF532__, 1-30
-D__ADSPBF533__, 1-30
-D__ADSPBF534__, 1-30
-D__ADSPBF535__, 1-31

-D__ADSPBF536__, 1-31
-D__ADSPBF537__, 1-31
-D__ADSPBF538__, 1-31
-D__ADSPBF539__, 1-31
-D__ADSPBF542__, 1-31
-D__ADSPBF544__, 1-31
-D__ADSPBF547__, 1-31
-D__ADSPBF548__, 1-31
-D__ADSPBF549__, 1-31
-D__ADSPBF54x__, 1-30
-D__ADSPBF561__, 1-31
-D__ADSPBLACKFIN__, 1-29
-D__ADSPLPBLACKFIN__, 1-29
-D__ADSPTS__, 1-29
-D__ADSPTS101__, 1-29
-D__ADSPTS201__, 1-29
-D__ADSPTS202__, 1-29
-D__ADSPTS203__, 1-29
-D__ADSPTS20x__, 1-29
-D_LANGUAGE_ASM, 1-27, 1-29

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-9

INDEX

feature preprocessor macros
__ADSP21000__, 2-16
__ADSP21020__, 2-16
__ADSP21060__, 2-16
__ADSP21061__, 2-16
__ADSP21062__, 2-16
__ADSP21065L__, 2-16
__ADSP2106x__, 2-17
__ADSP21160__, 2-16
__ADSP21161__, 2-17
__ADSP2116x__, 2-17
__ADSP21261__, 2-17
__ADSP21262__, 2-17
__ADSP21266__, 2-17
__ADSP21267__, 2-17
__ADSP21363__, 2-17
__ADSP21364__, 2-17
__ADSP21365__, 2-17
__ADSP21367__, 2-17
__ADSP21368__, 2-17
__ADSP21369__, 2-17
__ADSPBF522__, 2-18
__ADSPBF523__, 2-18
__ADSPBF524__, 2-18
__ADSPBF525__, 2-18
__ADSPBF526__, 2-18
__ADSPBF527__, 2-18
__ADSPBF532__, 2-18
__ADSPBF533__, 2-18
__ADSPBF534__, 2-18
__ADSPBF535__, 2-18
__ADSPBF536__, 2-19
__ADSPBF537__, 2-19
__ADSPBF538__, 2-19
__ADSPBF539__, 2-19
__ADSPBF542__, 2-19
__ADSPBF544__, 2-19
__ADSPBF547__, 2-19
__ADSPBF548__, 2-19
__ADSPBF549__, 2-19

__ADSPBF561__, 2-19
__ADSPBLACKFIN__, 2-18
__ADSPTS__, 2-18
__ADSPTS101__, 2-18
__ADSPTS201__, 2-18
__ADSPTS202__, 2-18
__ADSPTS203__, 2-18
-D_LANGUAGE_ASM, 2-16
-D_LANGUAGE_C, 2-16

.FILE_ATTR assembler directive, 1-87
-file-attr (file attribute) assembler switch,

1-153
file format, ELF (Executable and Linkable

Format), 1-3
__FILE__ macro, 2-16
.FILE (override filename) assembler

directive, 1-86
files

.asm (assembly source), 1-3

.dat (data), 1-3

.dlb (library), 1-4

.doj (object), 1-3

.h (header), 1-3

.is (preprocessed assembly), 1-163, 2-13
list of extensions, 1-143
naming conventions, 1-143

-flags-compiler assembler switch, 1-153,
1-154

-flags-pp assembler switch, 1-155
floating-point

precision, 1-112
rounding, 1-119

formats, numeric, 1-58
four-byte data initializer lists, 1-71
fractional

arithmetic, 1-61
constants, 1-61

INDEX

I-10 VisualDSP++ 5.0 Assembler and Preprocessor Manual

fracts
1.0r special case, 1-61
1.15 format, 1-60
1.31 format, 1-60
constants, 1-59
mixed type arithmetic, 1-61
signed values, 1-59

G
-g (generate debug info) assembler switch,

1-156
.GLOBAL (global symbol) assembler

directive, 1-88
global substitutions, 2-4
global symbols, 1-88
.GLOBL assembler directive, 1-70

H
hardware anomalies, warnings displaying,

1-149, 1-150, 1-161
header files

system, 2-5
tokens, 2-6
user, 2-5

hex value, decoding, 1-32
.h files, 1-3
-h (help) assembler switch, 1-157, 2-49
HI () assembler operator, 1-55

I
-I assembler switch, see -flags-compiler

switch
.IF conditional assembly directive, 1-62
#ifdef (test if defined) preprocessor

command, 2-31
#ifndef (test if not defined) preprocessor

command, 2-32

#if (test if true) preprocessor command,
2-30

-i (include directory path) assembler switch,
1-157

-i (include directory) preprocessor switch,
2-50

-I (include search-path)) assembler option,
1-155

-i (less includes) preprocessor switch, 2-50
.IMPORT assembler directive, 1-90
.IMPORT header files, 1-91

make dependencies from, 1-34
.INC/BINARY assembler directive, 1-93
.INCBIN assembler directive, 1-71
include files

system header files, 2-5
user header files, 2-5

#include (insert a file) preprocessor
command, 2-33

include path search, 2-7
#include preprocessor command, 2-5
initialization section qualifiers, 1-125
INPUT_SECTION_ALIGN() LDF

command, 1-74
input section alignment instruction, 1-74
intermediate source file (.is), 1-6
-I- (search system include files)

preprocessor switch, 2-51
.is (preprocessed assembly) files, 1-163,

2-13

K
keywords, assembler, 1-39, 1-47

L
__LASTSUFFIX__ macro, 2-16, 2-43
.ldf files, 1-8
.LEFTMARGIN assembler directive, 1-94

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-11

INDEX

legacy directives
.PORT, 1-111, 1-118
.SEGMENT/.ENDSEG, 1-128

LENGTH () assembler operator, 1-55
-li (listing with include) assembler switch,

1-159
__LINE__ macro, 2-16
#line (output line number) preprocessor

command, 2-35
linker, object file input to, 1-4
Linker Description Files (.ldf), 1-8
.LIST assembler directive, 1-95
.LIST_DATA assembler directive, 1-96
.LIST_DATFILE assembler directive, 1-97
.LIST_DEFTAB assembler directive, 1-98
listing files

address, 1-35
assembly process information, 1-4
assembly source code, 1-35
C data structure information, 1-4
data initialization, 1-97
data opcodes, 1-96
large opcodes, 1-101
line number, 1-35
.lst extension, 1-4, 1-35
named, 1-158
opcode, 1-35
producing, 1-4

.LIST_LOCTAB assembler directive,
1-100

.LIST_WRAPDATA assembler directive,
1-101

-l (named listing file) assembler switch,
1-158

LO () assembler operator, 1-55
local symbols, 1-88
local tab width, 1-98, 1-100
.LONG assember directives, 1-102
long-form initialization, 1-131
.lst files, 1-4

M
macro argument, converting into string

constant, 2-39
macros

assembler feature, 1-27
Blackfin feature assembler, 1-28
debugging, 2-13
defining, 2-9, 2-23
defining with variable length argument

list, 2-24
definition rules, 2-9
-D__VISUALDSPVERSION__, 1-32,

2-19
expansion, tokens, 2-6
feature assembler, 1-28
predefined preprocessor, 2-15
preprocessor feature, 2-15
SHARC assembler feature, 1-27
TigerSHARC assembler feature, 1-28
writing, 2-7

make dependencies, 1-34, 1-91
-meminit linker switch, 1-126
memory

initializer, 1-126
RAM (random access memory), 1-125
sections, declaring, 1-122
type, PM (code and data), 1-125
types, 1-8

.MESSAGE assembler directive, 1-103
-micaswarn assembler switch, 1-160
-M (make rule only) assembler switch,

1-159
-M (make rule only) preprocessor switch,

2-52
-MM (make rule and assemble) assembler

switch, 1-159
-MM (make rule and assemble)

preprocessor switch, 2-51, 2-52
-Mo (output make rule) assembler switch,

1-160

INDEX

I-12 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-Mo (output make rule) preprocessor
switch, 2-52

-Mt (output make rule for named file)
assembler switch, 1-160

-Mt preprocessor switch, 2-53
multi-issue conflict warnings, 1-160

N
N boundary alignment, 1-138
nested struct references, 1-67
.NEWPAGE assembler directive, 1-107,

1-118
--no-anomaly-workaround assembler

switch, 1-161
-no-expand-symbolic-links assembler

switch, 1-161
-no-expand-windows-shortucts assembler

switch, 1-162
NO_INIT

memory section, 1-127
section qualifier, 1-126

.NOLIST assembler directive, 1-95

.NOLIST_DATA assembler directive,
1-96

.NOLIST_DATFILE assembler directive,
1-97

.NOLIST_WRAPDATA assembler
directive, 1-101

-no-source-dependency assembler switch,
1-160

-no-temp-data-file assembler switch, 1-162
-nowarn preprocessor switch, 2-55

numeric formats, 1-58

O
object files

.DOJ extension, 1-4
producing, 1-4

OFFSETOF() built-in function, 1-65
-o (output) assembler switch, 1-162
-o (output) preprocessor switch, 2-53
opcodes, large, 1-101

P
.PAGELENGTH assembler directive,

1-108
.PAGEWIDTH assembly directive, 1-109
PM (48-bit word section) qualifier, 1-125
.PORT (declare port) assembler legacy

directive, 1-111, 1-118
-pp (proceed with preprocessing) assembler

switch, 1-163
#pragma preprocessor command, 2-36
.PRECISION assembler directive, 1-112,

1-115
predefined preprocessor macros

ADI, 2-16
__DATE__, 2-16
__FILE__, 2-16
__LASTSUFFIX__, 2-16
__LINE__, 2-16
__TIME__, 2-16

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-13

INDEX

preprocessor
assembly files, 2-21
command-line syntax, 2-44
commands, 1-7
commands, list of, 2-21
command syntax, 2-3, 2-21
compiler, 2-2
-cpredef (C style) switch, 2-47
-csall (all comment styles) switch, 2-49
-cs/* (/* */ comment style) switch, 2-48
-cs// (// comment style) switch, 2-49
-cs{ ({ } comment style) switch, 2-49
-cs! switch, 2-48
-D (define macro) switch, 2-49
feature macros, 2-15
global substitutions, 2-4
guide, 2-2
-h (help) switch, 2-49
-i (include path) switch, 2-50
-i (less includes) switch, 2-50
-I- (search system include files) switch,

2-51
-M (make rule only) switch, 2-52
-MM (make rule and assemble) switch,

2-52
-Mo (output make rule) switch, 2-52
-Mt (output make rule for named file)

switch, 2-53
-notokenize-dot switch, 2-53
-nowarn switch, 2-55
-o (output) switch, 2-53
option settings, 2-20
output file (.IS extenstion), 1-6
overview, 2-1
predefined macros, 2-15
running from command line, 2-44
source files, 2-21
-stringize switch, 2-53
system header files, 2-33
-tokenize-dot switch, 2-53

-Uname switch, 2-54
user header files, 2-33
-version (display version) switch, 2-54
-v (verbose) switch, 2-54
-warn (print warnings) switch, 2-55
-Wnumber (warning suppression)

switch, 2-55
-w (skip warning messages) switch, 2-54

preprocessor commands
#define, 2-23
#elif, 2-26
#else, 2-27
#endif, 2-28
#error, 2-29
#if, 2-30
#ifdef, 2-31
#ifndef, 2-32
#include, 2-33
#line (counter), 2-35
#pragma, 2-36
#undef, 2-37
#warning, 2-38

... preprocessor operator, 2-24
preprocessor operators, 2-24

? (generate unique label), 2-42
(concatenate), 2-41
(stringization), 2-39

.PREVIOUS assembler directive, 1-114,
1-115

-proc (target processor) assembler switch,
1-163

programs
assembling, 1-4
content, 1-6
listing files, 1-35
preprocessing, 1-25
structure, 1-8
writing assembly, 1-4

INDEX

I-14 VisualDSP++ 5.0 Assembler and Preprocessor Manual

project settings
assembler, 1-168
preprocessor, 1-25, 2-20

Q
qualifier, 1-103
question mark (?) preprosessor operator,

2-42

R
R32 qualifier, 1-60
relational

expressions, 1-63
operators, 1-54

RESOLVE() command (in LDF), 1-135
rounding modes, 1-119
.ROUND_MINUS (rounding mode)

assembler directive, 1-119
.ROUND_NEAREST (rounding mode)

assembler directive, 1-119
.ROUND_PLUS (rounding mode)

assembler directive, 1-119
.ROUND_ZERO (rounding mode)

assembler directive, 1-119
RUNTIME_INIT section qualifier, 1-126

S
-save-temps (save intermediate files)

assembler switch, 1-164
searching, system include files, 2-51
section

name symbol, 1-122
qualifier, DM (data memory), 1-125
qualifier, PM (code and data), 1-125
qualifier, RAM (random access

memory), 1-125
type identifier, 1-123

.SECTION (start or embed a section)
assembler directive, 1-122

initialization qualifiers, 1-125
.SEGMENT (legacy directive) assembler

directive, 1-128
.SEPARATE_MEM_SEGMENTS

assembler directive, 1-128, 1-129
.SET assembler directive, 1-73
settings

assembler options, from command line,
1-141

assembler options, from VisualDSP++
IDDE, 1-168

default tab width, 1-98
local tab width, 1-100
preprocessor options, build tools, 2-20
preprocessor options, command line,

2-20
preprocessor options, VisualDSP++,

2-20
SHF_ALLOC flag, 1-127
SHF_INIT flag, 1-127
SHORT assember directives, 1-129
.SHORT EXPRESSION-LIST assembler

directive, 1-73
short-form initialization, 1-131
SHT_DEBUGINFO section type, 1-123
SHT_NULL section type, 1-123
SHT_PROGBITS

identifier, 1-123
memory section, 1-127

SHT_PROGBITS section type, 1-123
__SILICON_REVISION__ macro, 1-164
-si-revision (silicon revision) assembler

switch, 1-164
SIZEOF() built-in function, 1-65
source files (.ASM), 1-4
special characters, dot, 1-50
special operators, assembler, 1-54

VisualDSP++ 5.0 Assembler and Preprocessor Manual I-15

INDEX

-sp (skip preprocessing) assembler switch,
1-165

-stallcheck assembler switch, 1-165
stall information, 1-165
statistical profiling, enabling in assembler

source, 1-35
string initialization, 1-81, 1-138
(stringization) preprocessor operator,

2-39
-stringize (double quotes) preprocessor

switch, 2-53
struct

layout, 1-91, 1-130
member initializers, 1-130
references, 1-66
variable, 1-130

struct references, nested, 1-66
.STRUCT (struct variable) assembler

directive, 1-130
STT_* symbol type, 1-134
switches, see assembler command-line

switches
switches, see preprocessor command-line

switches
symbol

assembler operator, 1-55
conventions, 1-50
types, 1-134

symbolic alias, setting, 1-73
symbolic expressions, 1-52
symbols, see assembler symbols
symbol type,changing default, 1-134
syntax

assembler command line, 1-142
assembler directives, 1-69
constants, 1-52
instruction set, 1-6
macro, 2-7
preprocessor command, 2-21

system header files, 2-5
searching, 2-51

T
tab characters

source files, 1-98, 1-100
tab width

changing, 1-98
default, 1-100

temporary data file, not written to a
memory (disk), 1-162

.TEXT assembler directive, 1-73
__TIME__ macro, 2-16
-tokenize-dot (identifier parsing)

preprocessor switch, 2-53
tokens, macro expansion, 2-6
trailing zero character, 1-82
two-byte data initializer lists, 1-73
.TYPE (change default type) assembler

directive, 1-134

U
-Uname (undefine macro) preprocessor

switch, 2-54
#undef (undefine) preprocessor command,

2-37
unique labels, generating, 2-42
user header files, 2-5

V
__VA_ARGS__ identifier, 2-24, 2-25
.VAR and .VAR/INIT24 (declare variable)

assembler directives, 1-79
.VAR (data variable) assembler directive,

1-135
... (variable-length argument list), 2-24
variable length argument list, 2-24

INDEX

I-16 VisualDSP++ 5.0 Assembler and Preprocessor Manual

-version (display version) assembler switch,
1-165

-version (display version) preprocessor
switch, 2-54

VisualDSP++
Assemble page, 1-35, 1-168, 1-169, 2-20
assembler settings, 1-168
assembling from, 1-3
preprocessor settings, 2-20
Project Options dialog box, 1-35, 1-38,

1-168, 1-169, 2-20
setting assembler options, 1-35, 1-168,

1-169
setting preprocessor options, 2-20

-v (verbose) assembler switch, 1-165
-v (verbose) preprocessor switch, 2-54

W
WARNING ea1121, missing end labels,

1-156
warnings

multi-issue conflicts, 1-160
printing, 2-55
suppressing, see -Wnumber (warning

suppression) preprocessor switch
#warning (warning message) preprocessor

command, 2-38

-warn (print warnings) preprocessor switch,
2-55

.WEAK assembler directive, 1-140
weak symbol binding, 1-140
-Werror number assembler switch, 1-166
-Winfo number (informational messages)

assembler switch, 1-166
-Wno-info (no informational messages)

assembler switch, 1-166
-Wnumber (warning suppression)

assembler switch, 1-166
-Wnumber (warning suppression)

preprocessor switch, 2-55
wrapping, opcode listings, 1-101
writing assembly programs, 1-4
-w (skip warning messages) assembler

switch, 1-166
-w (skip warning messages) preprocessor

switch, 2-54
-Wsuppress number assembler switch,

1-167
-Wwarn-error assembler switch, 1-167
-Wwarn number assembler switch, 1-167

Z
ZERO_INIT

memory section, 1-127
section qualifier, 1-126

	Contents
	Preface
	Purpose
	Intended Audience
	Manual Contents
	What’s New in this Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD

	Notation Conventions

	1 Assembler
	Assembler Guide
	Assembler Overview
	Writing Assembly Programs
	Figure 1-1. Assembler Input and Output Files
	Program Content
	Assembly Instructions
	Assembler Directives
	Preprocessor Commands

	Program Structure
	Table 1-1. Suggested Input Section Names for a SHARC .ldf File
	Table 1-2. Suggested Input Section Names for a TigerSHARC .ldf File
	Table 1-3. Suggested Input Section Names for a Blackfin .ldf File
	Table 1-4. Sections in Source Programs
	Code File Structure for SHARC Processors
	Figure 1-2. Assembly Code File Structure for SHARC Processors

	LDF for SHARC Processors
	Listing 1-1. LDF Example for SHARC Processors

	Code File Structure for TigerSHARC Processors
	Figure 1-3. Assembly Code File Structure for TigerSHARC Processors

	LDF for TigerSHARC Processors
	Listing 1-2. Example Linker Description File for TigerSHARC Processors

	Code File Structure for Blackfin Processors
	Figure 1-4. Assembly Source File Structure for Blackfin Processors

	LDF for Blackfin Processors
	Listing 1-3. Example Linker Description File for Blackfin Processors

	Program Interfacing Requirements

	Using Assembler Support for C Structs
	Preprocessing a Program
	Using Assembler Feature Macros
	Table 1-5. Feature Macros for SHARC Processors (Cont’d)
	Table 1-6. Feature Macros for TigerSHARC Processors
	Table 1-7. Feature Macros for Blackfin Processors (Cont’d)
	-D__VISUALDSPVERSION__ Predefined Macro (Assembler)
	Table 1-8. -D__VISUALDSPVERSION__ Decoding of Hex Value

	Generating Make Dependencies
	Reading a Listing File
	Enabling Statistical Profiling for Assembly Functions

	Assembler Syntax Reference
	Assembler Keywords and Symbols
	Table 1-9. SHARC Processor Assembler Keywords (Cont’d)
	Table 1-10. TigerSHARC Processor Assembler Keywords (Cont’d)
	Table 1-11. Blackfin Processor Assembler Keywords (Cont’d)

	Assembler Expressions
	Assembler Operators
	Table 1-12. Operator Precedence
	Table 1-13. Special Assembler Operators

	Numeric Formats
	Table 1-14. Numeric Formats
	Representation of Constants in Blackfin
	Fractional Type Support
	1.31 Fracts
	1.0r Special Case
	Fractional Arithmetic
	Mixed Type Arithmetic

	Comment Conventions
	Table 1-15. Comment Conventions

	Conditional Assembly Directives
	Table 1-16. Relational Operators for Conditional Assembly

	C Struct Support in Assembly Built-In Functions
	OFFSETOF Built-In Function
	SIZEOF Built-In Function

	Struct References
	Assembler Directives
	Table 1-17. Assembler Directive Summary (Cont’d)
	.ALIGN, Specify an Address Alignment
	.ALIGN_CODE, Specify an Address Alignment
	.ASCII
	.BYTE, Declare a Byte Data Variable or Buffer
	ASCII String Initialization Support

	.EXTERN, Refer to a Globally Available Symbol
	.EXTERN STRUCT, Refer to a Struct Defined Elsewhere
	.FILE, Override the Name of a Source File
	.FILE_ATTR, Create an Attribute in the Object File
	.GLOBAL, Make a Symbol Available Globally
	.IMPORT, Provide Structure Layout Information
	.INC/BINARY, Include Contents of a File
	.LEFTMARGIN, Set the Margin Width of a Listing File
	.LIST/.NOLIST, Listing Source Lines and Opcodes
	.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes
	.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files
	.LIST_DEFTAB, Set the Default Tab Width for Listings
	.LIST_LOCTAB, Set the Local Tab Width for Listings
	.LIST_WRAPDATA/.NOLIST_WRAPDATA
	.LONG, Defines and initializes 4-byte data objects
	.MESSAGE, Alter the Severity of an Assembler Message
	.NEWPAGE, Insert a Page Break in a Listing File
	.PAGELENGTH, Set the Page Length of a Listing File
	.PAGEWIDTH, Set the Page Width of a Listing File
	.PORT, Legacy Directive
	.PRECISION, Select Floating-Point Precision
	.PREVIOUS, Revert to the Previously Defined Section
	.PRIORITY, Allow Prioritized Symbol Mapping in Linker
	Linker Operation

	.REFERENCE, Provide Better Info in an X-REF File
	.RETAIN_NAME, Stop Linker from Eliminating Symbol
	.ROUND_, Select Floating-Point Rounding
	.SECTION, Declare a Memory Section
	Common .SECTION Attributes
	DOUBLE* Qualifiers
	Table 1-18. DOUBLE Qualifiers

	TigerSHARC-Specific Qualifiers
	Table 1-19. TigerSHARC-Specific Qualifiers

	SHARC-Specific Qualifiers
	Table 1-20. SHARC-Specific Qualifiers

	Initialization Section Qualifiers
	Table 1-21. SHARC-Specific Qualifiers
	Table 1-22. Section Qualifiers, Section-Header-Types, and Section-Header-Flags

	.SEGMENT and .ENDSEG, Legacy Directives
	.SEPARATE_MEM_SEGMENTS
	.SET, Set a Symbolic Alias
	.SHORT, Defines and initializes 2-byte data objects
	.STRUCT, Create a Struct Variable
	.TYPE, Change Default Symbol Type
	.VAR, Declare a Data Variable or Buffer
	.VAR and ASCII String Initialization Support

	.WEAK, Support Weak Symbol Definition and Reference

	Assembler Command-Line Reference
	Running the Assembler
	Table 1-23. Assembler Command Line Arguments
	Table 1-24. File Name Extension Conventions

	Assembler Command-Line Switch Descriptions
	Table 1-25. Assembler Command-Line Switch Summary (Cont’d)
	-align-branch-lines
	-anomaly-detect [id1[,id2...]]
	-anomaly-warn {id1[,id2]|all|none}
	-anomaly-workaround [id]
	-char-size-8
	-char-size-32
	-char-size-any
	-default-branch-np
	-default-branch-p
	-Dmacro[=definition]
	-double-size-32
	-double-size-64
	-double-size-any
	-expand-symbolic-links
	-expand-windows-shortcuts
	-file-attr attr[=val]
	-flags-compiler
	User-Specified Defines Options
	Include Options

	-flags-pp -opt1 [,-opt2...]
	-g
	WARNING ea1121: Missing End Labels

	-h[elp]
	-i
	-l filename
	-li filename
	-M
	-MM
	-Mo filename
	-Mt filename
	-micaswarn
	-no-source-dependency
	-no-anomaly-detect [id1[,id2...]]
	-no-anomaly-workaround [id1[,id2...]]
	-no-expand-symbolic-links
	-no-expand-windows-shortcuts
	-no-temp-data-file
	-o filename
	-pp
	-proc processor
	-save-temps
	-si-revision version
	-sp
	-stallcheck
	Table 1-26. -stallcheck Options

	-v[erbose]
	-version
	-w
	-Werror number[,number]
	-Winfo number[,number]
	-Wno-info
	-Wnumber[,number]
	-Wsuppress number[,number]
	-Wwarn number[,number]
	-Wwarn-error

	Specifying Assembler Options in VisualDSP++
	Figure 1-5. Example: Project Options Dialog Box - Project Page
	Figure 1-6. Example: Project Options Dialog Box - Assemble Page

	2 Preprocessor
	Preprocessor Guide
	Writing Preprocessor Commands
	Header Files and the #include Command
	System Header Files
	User Header Files
	Sequence of Tokens
	Include Path Search

	Writing Macros
	Macro Definition and Usage Guidelines
	Examples of Multi-Line Code Macros with Arguments
	Debugging Macros

	Using Predefined Preprocessor Macros
	Table 2-1. Common Predefined Preprocessor Macros
	Table 2-2. SHARC Feature Preprocessor Macros (Cont’d)
	Table 2-3. TigerSHARC Feature Preprocessor Macros
	Table 2-4. Blackfin Feature Preprocessor Macros (Cont’d)
	-D__VISUALDSPVERSION____ Predefined Macro (Preprocessor)

	Specifying Preprocessor Options

	Preprocessor Command Reference
	Preprocessor Commands and Operators
	Table 2-5. Preprocessor Command Summary
	Table 2-6. Preprocessor Operator Summary
	#define
	Variable-Length Argument Definitions
	Table 2-7. Sample Variable-Length Argument List

	#elif
	#else
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma
	#undef
	#warning
	# (Argument)
	## (Concatenate)
	? (Generate a unique label)

	Preprocessor Command-Line Reference
	Running the Preprocessor
	Table 2-8. Preprocessor Command Line Argument Summary

	Preprocessor Command-Line Switches
	Table 2-9. Preprocessor Command-Line Switch Summary (Cont’d)
	-cpredef
	-cs!
	-cs/*
	-cs//
	-cs{
	-csall
	-Dmacro[=def]
	-h[elp]
	-i
	-i
	-I-
	-M
	-MM
	-Mo filename
	-Mt filename
	-o filename
	-stringize
	-tokenize-dot
	-Uname
	-v[erbose]
	-version
	-w
	-Wnumber
	-warn

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

