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Abstract

This paper describes testing of the real-time (CONFIG_PREEMPT_RT) Linux kernel. It explains how
testing the real-time kernel is different from testing the mainline Linux kernel and provides some tips
and guidelines about writing test cases for the real-time kernel. It illustrates real-time tests in the Linux
Test Project (LTP) suite using examples. It also briefly covers real-time tests that are not part of LTP.

1 Real-Time Operating Systems

This section explains what a Real-Time (RT) Operating System (OS) is, the need for real-time response
in enterprise applications and the real-time approach adopted by CONFIG_PREEMPT_RT patchset.

1.1 What is a Real-Time Operating System?

A general purpose OS tries to get the maximum amount of work done using the resources available as
effectively as possible. The focus here is on throughput. Real time OSes on the other hand focus on
predictability and determinism. Real-time tasks should be scheduled on the processor in a predictable
time frame, possibly preempting other non-realtime tasks, even though it compromises overall system
throughput. Depending on the implementation and environment, real-time OSes may provide a certain
level of latency guarantees to the applications. Depending on this, real-time systems are categorized into
hard and soft real-time.

1.2 Need for real-time response in enterprise systems

Real-time systems have traditionally been used in niche environments, often with custom designed hard-
ware. The hardware is very small, typically with just one cpu, sometimes even an embedded device with
no support for virtual memory, external storage or TCP/IP networking. The OS is often custom designed
for the purpose. They generally do not support standard APIs like POSIX and often need a specialized
programming model.

On the other hand, enterprise systems have been multi-processor systems built using commodity
hardware. They support virtual memory, various types of storage, good networking options and ability
to add new hardware as and when required. The OSes on them support standards like POSIX and they
have good support for various programming languages and generic applications. Throughput is the most
important criterion in these systems.

Currently a new type of requirement is emerging. Some of the applications that run on enterprise sys-
tems have started demanding certain soft real-time characteristics even from enterprise systems because



they need to take advantage of reduced latencies and predictable performance. Some of such domains are
defense [1] and financial applications. Advancements in hardware technology like increased processor
capabilities, advent of multi-core processors and so on has made it possible to design such systems.

1.3 CONFIG_PREEMPT_RT approach

CONFIG_PREEMPT_RT patches [6], referred to as RT patches henceforth in this paper, were initiated
by Ingo Molnar. These patches convert the standard Linux kernel into a soft real-time kernel. Since RT
patches apply on top of the standard Linux kernel, all the functionality provided by Linux kernel are also
provided by the real-time kernel. As a result, applications designed for the mainline Linux kernel work
as-is on real-time kernel.

The RT patches cannot make all areas of the Linux kernel provide real time response. They only
concentrate on some areas of the kernel like process scheduling, signal delivery, context switching and
so on. On the other hand, external storage devices like disks cannot provide deterministic timing char-
acteristics. Hence any task that performs disk IO cannot expect real-time responses even on real-time
kernel. Another such example is network operations, because TCP/IP networking stack doesn’t provide
real-time response.

Let us try to understand how RT patches provide real-time characteristics to the Linux kernel. To
understand this, let us look at some of the important changes introduced by RT patches [2]. Over a period
of time, some of the changes introduced by RT patches were found to be useful even on the mainline
kernel, hence they were included in the mainline kernel.

High Resolution Timers : This patch provides support for clocks that provide higher resolution. This
helps in improving the granularity of timing critical operations. This patch has already been inte-
grated into the mainline kernel.

Threaded interrupts: In the Linux Kernel, interrupt handlers (IRQs) can preempt any other process
while they cannot be preempted themselves. Hence interrupt handlers can induce high latencies
even in high priority time-critical processes. RT patches convert most of the interrupt handlers into
kernel threads. This makes interrupt handlers schedulable entities, just like a regular process on
the system. With careful design, this reduces latencies in high priority processes. However, there
are some interrupts that cannot be run in threads and hence their functionality is retained in the
original form. Timer interrupt is an example of this.

Threaded softirqs: Similar to interrupt handlers, softirqs run as kernel threads in the real-time kernel.

Kernel preemption: The kernel code is made as preemptible as possible by avoiding sections that dis-
able preemption, because non-preemptible portions contribute to high latencies.

Preemptible spin locks: In the mainline kernel, critical sections are protected by spinlocks. When a
thread holds a spin lock, it won’t be preempted. Large critical sections can induce high latencies
in the kernel. RT patches convert spin locks into sleepable mutexes. That is, a thread can be
preempted even while it is holding a spin lock. There are a few areas of the kernel that still need
old style spin lock implementation that disables preemption. RT kernel provides this capability
through what are called raw spin locks.

Priority Inheritance: One of the classic problems of designing real-time systems is of priority inver-
sion. A higher priority process can be kept waiting indefinitely for a lock that is held by a lower
priority process, because another process of medium priority hogs the cpu. One of the most popu-
lar methods of solving this problem is by priority inheritance (PI). During the time a low priority
process holds a lock for which a high priority process is waiting, the low priority process inherits
the priority of the high priority process. This priority boosting prevents medium priority processes
from hogging the cpu. PI support has already been integrated into the mainline kernel.



2 Testing the real-time kernel

Most of the testing done on mainline kernel is relevant on the RT kernel as well. However, the focus of
the RT kernel is different from that of the mainline kernel. Hence, the importance of some of these tests
may be different on RT kernel compared to the mainline kernel.

2.1 Categories of tests

There are 3 broad categories of tests for the real-time kernel.

Functionality: The real-time kernel is expected to provide same functional characteristics as the main-
line kernel. That is, all the APIs are expected to behave exactly as they do on mainline kernel.
Hence standard functional tests in LTP [3] and Open POSIX test suite [4] are relevant and as
important on real-time kernel as they are on the mainline kernel.

Throughput/performance: Performance tests can be run on the real-time kernel just like they are run on
the mainline kernel. However, the throughput is likely to be less than that on the mainline kernel.
This is because some of the modifications in real-time kernel sacrifice performance in favor of
predictability. However, one of the aims of real-time kernel is to be as close to mainline kernel in
performance as possible. Hence standard performance benchmarks like SPEC benchmarks, TPC
benchmark are relevant on real-time kernel as well. It is important to compare performance of
real-time kernel with mainline kernel and find out where performance bottlenecks are. Note, some
of these bottlenecks can’t be easily fixed if they arise because of the design of the real-time kernel.

Latency: Naturally, this is the most important category of tests on the real-time kernel. These tests
concentrate on certain operations of the kernel. They measure the amount of time these operations
take (latency) and more importantly the variation in this latency over time and under various cir-
cumstances. Some examples of such tests are signal delivery latency, scheduling jitter, scheduling
delays, context switch duration and so on. It is also useful to observe the effect of background
non-real-time load on the latency tests.

2.2 Setting up the real-time system

It is important to choose a suitable system and configure it for running real-time tests. The following are
some of the considerations for this:

Hardware: Important considerations while choosing the hardware are as follows:

• The real-time kernel has been widely used on x86 and x86_64 architectures. It has been
tested on PowerPC architecture as well. It may not be possible to run the real-time kernel on
some architectures because the patches may not have been ported to that architecture.

• The real-time kernel works best when run directly on the hardware, rather than on a virtual-
ization layer, because the virtualization layer may cause unpredictable latencies.

• Make sure the system has enough memory (RAM) to run the test case. Any swapping of
memory pages used by real-time applications will induce very large, unacceptable latencies.

• Some of the hardware may support System Management Interrupts (SMIs) [5], which are
controlled by the firmware, that can produce high latencies in the kernel.

• There could be other factors to consider, like NUMA characteristics of the system. Access-
ing memory from local NUMA node is faster than accessing memory from a remote node.
Location of the memory used by the testcase can have an impact on the latencies seen.



Kernel: Download the latest latest RT patches from kernel.org [6] and apply them on the appropriate
mainline kernel. The procedure to compile and boot the real-time kernel is same as the mainline
kernel [7].

Kernel configuration: Some of the kernel configuration options may have an impact on real-time laten-
cies. These options include Power Management, especially CPU frequency scaling, value of HZ,
NUMA configuration and so on. Additionally, most debug options (Kernel hacking section) lead
to increased latencies.

Priorities of IRQs and softirqs: As mentioned in the section 2.3 above, the real-time kernel runs most
interrupts and softirqs in a thread. Hence ’ps’ command can show all of these threads and their
priorities as shown below:

# ps -eo comm,pid,class,rtprio | grep -i irq

sirq-high/0 5 FF 30
sirq-timer/0 6 FF 30
sirq-net-tx/0 7 FF 90
sirq-net-rx/0 8 FF 90
sirq-block/0 9 FF 30
sirq-tasklet/0 10 FF 30
sirq-sched/0 11 FF 30
sirq-hrtimer/0 12 FF 92
sirq-rcu/0 13 FF 30
sirq-high/1 18 FF 30
...
...
IRQ-11 119 FF 95
IRQ-12 408 FF 95
IRQ-1 409 FF 95
IRQ-8 420 FF 95
IRQ-19 438 FF 95
IRQ-26 489 FF 95
IRQ-6 1079 FF 95
IRQ-24 8230 FF 95
IRQ-4 10449 FF 95
IRQ-3 10451 FF 95

Priorities of IRQ and softirq threads can be changed using ’chrt’ command. Special care should be
taken while deciding the priority values for these kernel threads, as incorrectly configured priorities
could potentially hang the system. Linux distributors that ship real-time kernel typically provide a
user-level application which makes it easy to control the priorities of these threads. For example,
Red Hat’s MRG [8] ships a tool called rtctl.



3 Tips for writing test cases

While any code written for mainline kernel will run fine on real-time kernel, programs that need to take
advantage of real-time kernel’s characteristics need to be carefully designed. The following are the main
precautions to be taken to write good test cases for the real-time kernel.

• It is preferable to run tests that measure real-time characteristics as real-time processes
(SCHED_FIFO or SCHED_RR). SCHED_FIFO is preferable because it makes the tests more
predictable than SCHED_RR. Care needs to be taken while choosing priorities for threads created
by the test case. If enough SCHED_FIFO threads with very high priorities are run, they can hog
the system completely, with no time left even to service interrupts. This will cause the system to
hang.

• Real-time applications cannot tolerate delays caused by swapping out of their pages. Hence, ensure
that the memory used by the test case is limited to available RAM.

• Page faults can cause large latencies in applications. A number of page faults happen when the
application starts up. These cannot be prevented. However, the test should try to avoid page faults
when the real-time criterion is being tested. The following precautions could be taken to prevent
page faults during the core of the test when latencies are being measured:

– The test case should lock all it’s memory using mlockall() call.

– It should not create new threads during this time. Threads could be created beforehand and
be kept ready.

– Dynamic memory allocation (malloc) should be avoided.

– Calls that do disk IO, network IO or file handling should be avoided.

• Real-time test cases should take into account the number of cpus on the system. For certain types
of tests, it may be necessary to restrict the test case to a single cpu on the system. This can be done
either using sched_setaffinity call in the test case or taskset command while starting the test. On
some occasions, it may be necessary to run dummy busy threads on all but one of the cpus on the
system.

• Sometimes the tests may be sensitive enough to be affected by interrupts being serviced on the
cpus where the tests are running. While it is possible to run the tests at priorities above that of
interrupt threads, this may not be the best solution always because it can starve the interrupts. In
such cases, it may be necessary to shield the cpus on which real-time tests are run from receiving
any interrupts. This can be done by writing appropriate values to /proc/irq/<n>/smp_affinity file,
where <n> is the IRQ number.

• A real-time test case needs to record time at various places. It is important to use the right calls to
record time by understanding the resolution they support. Using clock_gettime() is the preferred
way because it supports nanosecond resolution. Note, CLOCK_REALTIME is the wall clock,
hence the time value it reads can be affected by time adjustments made by NTP. On the other
hand, CLOCK_MONOTONIC is a continuously increasing time value. Hence it is preferable to
use CLOCK_MONOTONIC to record time.

• One needs to understand clearly the working of PI mechanism. Without this, the test may report
incorrect values. For example, consider the following scenario, where a low priority thread T1 is
holding a PI lock L1 on which a high priority thread T2 is waiting. Due to PI, T1 is boosted to the
priority of T2 until the time P1 releases L1. T1 now wants to release the lock and record the time
at which it releases the lock.



T1 (Holding L1) T2
T2: Wait for L1

T1: Gets boosted due to PI
T1: Unlock (L1). Loses prio boost

T2: lock(L1)
T2: Do some work
T2: unlock(L1)
T2: schedule()

T1: Time=clock_gettime(...)

In the above pseudo code, T1 first releases the lock and then calls clock_gettime() to record the
time. However, T1’s priority is de-boosted as soon as it releases the lock. Hence it won’t be able
to call clock_gettime() until the high priority thread T2 gives up the cpu. Hence the time recorded
in T1 is wrong. This could happen even if the lock is non-PI. However, PI mechanism makes this
problem come vividly alive, because of priority de-boosting when the lock is released. To rectify
this, T1 needs to record the time before unlocking the lock.

• If a test runs for a very short time, it is not possible to predict whether some periodic activities
like timer interrupts and SMIs interrupt the test case. This might paint an unrealistic picture of the
latencies seen by the test case. Hence in such cases, it is useful to run a large number of iterations
of the test case and observe both average and maximum values.

• Usage of sched_yield() is discouraged. If sched_yield() is called in a high priority SCHED_FIFO
process and if all other threads are of lower priority than it, the thread immediately resumes back
on the cpu. This defeats the very purpose of calling sched_yield(), which is to let some other thread
run, possibly to change some data on which the high priority thread depends.

• While developing test cases, it is possible that there are bugs in it that make the test busy loop on
the cpus, preventing any other normal applications from being run. As a precaution, one could
run an sshd thread at a very high priority (SCHED_FIFO, priority 99) on a different port before
starting such tests. In case the test case busy loops on the system which makes ssh connections
unresponsive, one could still log in through the high priority sshd interface. Please note, this should
be used only during test case development, not on production systems.

4 Overview of real-time tests

This section will present an overview of real-time tests, covering the tests that are in LTP as well as the
ones outside LTP.

4.1 Overview of real-time tests in LTP

When we started using real-time kernel a couple of years ago, we also started writing test cases for it. We
started off with tests for functionality and latencies. Later on, we wrote some stress and performance tests
as well. We put these tests on kernel.org [9] and this started attracting contributions from the community.
Some of these contributions include support for PowerPC architecture and a number of bug fixes and
enhancements. A few months ago we integrated our tests into the LTP [3] to increase visibility of these
tests and make it easy for others to use and contribute to. This has resulted in increased community
activity in this area. Let’s look at some of the real-time tests in LTP to understand what they test and



how. Real-time test cases are under testcases/realtime directory in LTP tree. Figure 1 shows parts of the
directory tree.

Figure 1: testcases/realtime directory in LTP

The lib/ directory provides utility functions that are used by other test cases. Figure 2 shows parts of
the contents of func/ directory, which contains functional tests.

Figure 2: testcases/realtime/func directory in LTP

Each of these tests covers a specific scenario. Some of them were written to test a particular failing
scenario. Though those problems may have been fixed now, these tests will serve as a regression test
bucket while code changes happen.

Many of these tests run a large number of iterations of a small test scenario. The absolute values
from each iteration and the average of them are significant, but not as much as the maximum values.
Remember, the biggest goal of the real-time kernel is to provide predictable worst case scenario. Now
let us look at the design of some of these test cases.

4.2 Design of pi_perf test case

Let us look at the design of the pi_perf test case. This test case measures the amount of time spent in
priority inheritance algorithm. Figure 3 helps us in understanding the test case.

The first important thing this test does is to initialize two pthread barriers. These are used to
synchronize between the threads. It then initializes the main mutex used for PI tests using a utility
function, init_pi_mutex(). This utility function is implemented in lib/librttest.c. This initializes the
pthread_mutex_t as a PI mutex using calls pthread_mutexattr_setprotocol() and pthread_mutex_init().



Figure 3: Design of pi_perf test case

Next, the test creates all the threads it needs using the utility function create_fifo_thread(). Again,
create_fifo_thread is implemented in librttest.c. It creates a SCHED_FIFO thread pthread using appro-
priate attribute values. The test creates a low priority (LP) thread at priority 30, a high priority (HP)
thread at priority 40 and busy threads at priority 35. Busy threads are as many as the number of cpus on
the system.

Now the action switches to the threads. The LP thread always gets the mutex first because of the
pthread barrier synchronization used. It first records the time using rt_gettime() utility function. This
function uses clock_gettime() to get the system time and converts it to nanoseconds.

The LP thread then does busy work for a fixed number of milliseconds using busy_work_ms() utility
function. It then records the unlock time, calculates the hold time and releases the mutex.

The HP thread, when it is past the barrier wait, first records the time. It then tries to get the mutex
using pthread_mutex_lock(), but this fails because the low priority thread already has the mutex. By this
time, busy threads are already active and are trying to hog the cpu. However, because of the Priority
Inheritance, the LP thread now inherits the priority of HP thread. Hence it’s priority becomes more than
that of busy threads and so busy threads won’t be able to preempt it.

When the LP thread releases the lock, it’s priority is reset to it’s old low value. The HP thread now
grabs the mutex and records the time. It calculates the amount of time spent while waiting to get the
lock. It also calculates the time difference between the time low priority thread releases the lock to the
time high priority thread gets the lock.

This activity is repeated a number of times in a loop and values from each iteration are saved in



arrays. These values are passed to utility functions to find out max, min, average, quantiles and so on.
The passing condition for this test is that the difference between the wait time of HP thread and the hold
time of LP thread should not be more than a defined maximum, which is 200 microseconds in the test.

4.3 Design of pthread_kill_latency test case

As a second example, let us look at the pthread_kill_latency test case. The aim of this test is to measure
the latency involved in sending a signal to a thread. Figure 4 helps us in understanding the test case.

Figure 4: Design of pthread_kill_latency test case

The main thread creates two threads - the signal sending (SS) thread and the signal receiving (SR)
thread. It then just waits for the threads to finish.

The Signal Sending (SS) thread waits until the Signal Receiving (SR) thread is initialized. This
synchronization is handled by a global atomic variable (atomic_t flag). The SR thread adds the SIG-
NALNUMBER (shared by both the threads) to its signal set via the sigaddset() and modifies it’s signal
mask using pthread_sigmask(). It then lets the SS thread know thats it is ready.

The SS thread records the current time (begin) using rt_gettime() and sends the signal to SR thread
using pthread_kill(). The SR thread, on receiving the signal, records the time (end) using rt_gettime().
Now, delta = end - begin is calculated as the latency. These steps are run in a loop of 10000 and the
maximum and minimum are calculated. The maximum value of latency is used to determine whether
the test passed or not. Currently, the acceptable latency is 20 us, although this value can be changed via
command line.

In each iteration, after sending the signal SS thread waits until SR thread has finished processing the
signal and has done the necessary calculations, before sending the next signal in the next iteration. This
synchronization is achieved by the atomic global variable (flag) as mentioned above.



4.4 A comparison of pthread_kill_latency test on mainline and real-time kernels

Comparing the output of functional tests on mainline and real-time kernels can help us visualize the
improved predictability provided by the real-time kernel. The charts in Figure 5 show a plot of outputs
of pthread_kill_latency test case described in section 5.3.

Figure 5: Comparison of mainline and real-time kernels

Figure 5 shows the plots of outputs from 100 iterations of pthread_kill_latency test case. The picture
on the left shows the plot on mainline kernel version 2.6.24.7. The picture on the right is the same on
real-time kernel version 2.6.24.7-rt14. Taking a close look at the values reveals that though the mainline
kernel has the lowest values, the variation in the output is quite a bit. In comparison, real-time kernel has
provided more consistent, predictable outputs.

4.5 Real-time Tests outside the LTP

Some of popular real-time tests are not part of the LTP. The most popular of these is the rt-tests suite
maintained by Thomas Gleixner [10]. This test suite consists of three tests.

cyclictest: This test is used to determine the accuracy of the High Resolution Timers (hrtimers). Mul-
tiple threads are created. Each thread sleeps for a particular predefined amount of time using
clock_nanosleep or sys_nanosleep. The actual time a thread slept is calculated. The difference
between the time the thread should have slept and the actual time it slept is the latency that is
reported. This test measures the minimum latency, maximum latency and average latency.

signaltest: This test measures the round trip for a signal. The test creates N threads. Each thread waits
for a signal to be received. The main thread sends a signal to the 0th thread. The 0th thread in turn
sends the signal to the 1st thread and so. The N th thread sends a signal to the 0th thread.

Each thread measures the round trip time of the signal i.e the amount of time taken for the ith

thread to receive a signal from (i − 1)th thread after the ith thread sent a signal to the (i + 1)th

thread.

This test measures the minimum time taken for any thread to receive a signal after it sent one, the
maximum time taken for any thread to receive a signal after it sent one and Average times.

pi_tests: These tests test the Priority Inheritance Mutexes and their ability to avoid Priority Inversion
from occurring. These tests are similar to the pi-tests tests which are part of real-time test suite in
LTP.



5 How to get started

This section explains how one could get started with real-time testing and predicts the future direction of
real-time testing in LTP.

5.1 Where do I begin?

The following are the ways in which someone who is interested in using and contributing to the real-time
tests can get started.

• Using real-time tests in LTP is pretty straightforward. There are instructions available along with
the test cases. It is important to understand the characteristics of real-time testing and how it is
different from testing the regular kernel.

• Bug reporting, handling and patching in the real-time kernel works similar to the mainline ker-
nel. Problems are reported to linux-rt-users mailing list [11] as well as Linux Kernel Mailing List
(LKML)[12], copying the relevant people. Since many of the features in real-time kernel eventu-
ally make their way into the mainline kernel, kernel developers are interested in knowing about
problems seen in real-time kernel as well. Also, on some occasions, real-time kernel exposes
certain race conditions that are much harder to recreate on the mainline kernel.

• Debugging a latency problem can be a difficult task. It is a good idea to narrow down the problem
as much as possible by testing various kernel versions or various scenarios. There are some useful
tools to trace latencies, like latency tracer and logdev [13]. Sometimes, lockdep, lockstat and
oprofile also prove very useful.

• Those who wish to contribute to the real-time tests in LTP should go through existing real-time
tests both in and outside LTP and understand what they do. Identify any missing functionality or
ways to improve the existing test cases. Finally, the work should be submitted to LTP mailing list
[14].

5.2 Future

The real-time tests in LTP are still evolving. Hence they can be enhanced/improved in a number of ways.
The following list is sort of a wish list of the authors for the future of real-time tests in LTP.

• Clean-up. There may be overlapping functionality in different tests. It will be useful to consolidate
such functionality.

• Write new test cases: For functionality that is not covered by existing tests.

• Find out if there are functionalities covered by tests outside LTP that are not covered by tests in
LTP. Either convince the authors of those tests to submit them to LTP or write new test cases that
provide equivalent functionality.

• Improve stress tests.

Conclusion

Real-time Linux is an emerging area of Linux kernel. Hence there is a lot of need for testing it thoroughly.
This paper has explained the existing test cases for real-time Linux and explained how to contribute in
this area.
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